Comparison of the Effect of Metronidazole, Tinidazole, Mango and Blueberry Extracts on *Trichomonas vaginalis* in Vitro

Zeynab Baharvandi, Javid Sadraei*

Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran

*Corresponding author: Javid Sadraei, Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran. Tel: +98 2182883841, E-mail: sadraej@modares.ac.ir

Submitted: February 06, 2015; Revised: May 06, 2015; Accepted: May 17, 2015

Background: *Trichomoniasis* is the most common nonviral sexually transmitted human disease that is caused by protozoan *Trichomonas vaginalis*. Metronidazole is the selective drug in trichomoniasis treatment. However, the reported cases show an increasing trend of drug resistance. This study aimed to evaluate the effect of mango and blueberry extracts on *T. vaginalis*. Materials and Methods: *T. vaginalis* was cultured axenically in TYM (Trypticase Yeast Extract) medium supplemented with 10% bovine serum. The effect of mango and blueberry extracts at 50, 100, 200, 400, 800 and 1000 μg·mL⁻¹ on *T. vaginalis* was studied after 24 and 48 hours. The final results confirmed the significant effect of all mango and blueberry extracts concentrations on the reduction of parasite numbers (P-value<0.05). The extract concentrations of 1000 μg·mL⁻¹ had the most significant effect on *T. vaginalis* growth inhibition after 24 hours. The IC₅₀ values of mango and blueberry extracts, metronidazole, and tinidazole were calculated as 118.3, 60.74, 0.042 and 0.02 μg·mL⁻¹ respectively.

Conclusion: Based on the obtained results, the different concentrations of mango and blueberry extracts have significant anti *Trichomonas vaginalis* activities. It is suggested carrying out further studies on suitable animal models.

Keywords: *Trichomonas vaginalis*, Mangifera, Blueberry plant, Metronidazole, Tinidazole, Inhibitory concentration 50

1. Background

Chemotherapy some of the parasitic infections remains an problem. Drug resistance is emerging, not only in helminthic diseases (1) but also in protozoan infections such as *Trichomonas vaginalis*, that is causing the most general parasite sexually transmitted diseases (2). *T. vaginalis* is a parasitic protozoa that causing trichomoniasis in human urogenital tract (3). According to WHO, more than 170 million people are infected with *T. vaginalis* annually worldwide (4). Typical symptoms of trichomoniasis are vaginitis and cervicitis in women; in men the infection can lead to chronic prostatitis syndrome (5). Trichomoniasis increases the risk of human immunodeficiency virus infection (6) and is associated with miscarriages (6) and cancer of the cervix (7). The most important illnesses of trichomoniasis are foul-smelling discharge, pruritus, vaginal or urethral discharge, severe irritation, edema or erythema, dysuria, and abdominal pain. Trichomoniasis in pregnant women, causing premature membrane rupture & labor, and low birth-weight babies delivering(8). For the treatment of human trichomoniasis metronidazole and tinidazole are choice drugs. However, we have reports of teratogenic, potential carcinogenic, embryogenic effects and clinical and laboratory-generated drug-resistant to subtype of *T. vaginalis* (9). Urticaria, vertigo, glossitis, headache, nausea, pruritus, vomiting, bitter metallic taste, dry mouth, and a disulfiram-like reaction with ingestion of alcohol have been reported. Some of the serious side effects are uncommon, but they are include leucopenia, eosinophilia, confusion, palpitation, and various (CNS) effects (10). In order to improve the current chemotherapy of *T. vaginalis* infection, medicinal plants could be a source of new antiprotozoal drugs with high activity, low sideeffect, and a economical price.

2. Objectives

The propose of this study was to estimate the in vitro richomonacidal activity of the ethanolic extracts of mango and blueberry. As far as our literature study could establish, no report is available for the trichomonacidal activities of these plant species in the literature.

3. Materials and methods

3.1. Preparation of crude extracts

Preparation of the ethanolic extract for screening of antitrichomonal activity was carried out with 20 g of collected plants material that was solved in 300 mL of ethanol for 1 week at room temperature,. The solvent was removed by rotary evaporator after filtration. The concentrate was dried by vacuum freeze dryer and prouduct stored at −20 °C for further laboratory analysis, in tightly sealed glass vials (11).

3.2. Parasites

Trophozoites of *T. vaginalis* were maintained in TYM (tryp ticase yeast extract) culture medium supplemented with 10% bovine serum. *T. vaginalis* were axenically maintained, and employed in the log phase of growth for the assays.

3.3. In vitro susceptibility assays

The 10¹⁴ CFU·mL⁻¹ of *T. vaginalis* trophozoites were incubated for 24 and 48 h at 37 °C in the presence of different concentrations (50–1000 μg·mL⁻¹) of the crude extracts. The final numbers of parasite with a hemocytometer and Trypan blue were recorded. Then the value of IC₅₀ was calculated in the concentrations of 0.02, 0.04, 0.08, 0.16 and 0.32 μg·mL⁻¹.
extracts and metronidazole and tinidazole (0.02, 0.04, 0.08, 0.16, 0.32 μg·mL⁻¹) in dimethyl sulfoxide (DMSO) separately. Each test included metronidazole as positive control, a control (culture medium plus trophozoites and DMSO), and a blank (culture medium). After that the final number of parasites was determined with a hemocytometer and vital dyes test. The results were obtained from at least three independent experiments, in triplicate, and expressed as the percentage of living parasites after 24 and 48 hr of incubation considering motility and normal morphology (percentage of living organisms compared to negative control). The concentration required to inhibit 50% of the parasites growth (IC₅₀), was determined by nonlinear regression (2). The IC₅₀ was calculated by probit analysis (GraphPad Prim5 software) (12).

3.3. Cytotoxicity against the VERO cell line

Cytotoxicity of host cells is a very important decisive factor for assessing the selectivity of observed antitrichomonal activity. 10³ viable cells from the cell line were seeded in a 96-well plate (Costar) and incubated for 24 hr. Vero (African green monkey kidney) cells were grown in DMEM (Gibco) media supplemented with 10% (v/v) fetal bovine serum (FBS; Gibco) with 100 UmL⁻¹ penicillin and 100 μg·mL⁻¹ streptomycin and maintained at 37 °C in a 5% CO₂ atmosphere with 95% humidity. When cells reached >80% confluence, the medium was replaced, and the cells were treated with the mango and blueberry extracts in 50, 100, 200, 400, and 800 μg·mL⁻¹. Amounts of 0.02, 0.04, 0.08, 0.16 and 0.32 μg·mL⁻¹ of metronidazole and tinidazole, dissolved in dimethyl sulfoxide (DMSO) at a concentration of 0.05%, was added to each well and incubated at 37 °C for 4 hr. DMSO was added and the plates incubated for 15 min to stop the reaction and to dissolve the insoluble purple formazan. The amount of MTT-formazan present is directly proportional to the number of living cells and was determined by measuring the optical density (OD) at 550 nm. Three wells per dose were analyzed in three diverse experiments, and the results were expressed as the percentage of viable cells in comparison to the negative control (untreated cells). Metronidazole was used as a positive control, while untreated cells were used as negative controls. The cytotoxicity of the crude extract that killed 50% of the cells (CC₅₀) was calculated by GraphPad Prim 5 software. The selectivity index (SI) of the extracts, defined as the ratio of cytotoxicity of biological activity (SI=CC₅₀/IC₅₀ T. vaginalis), was then calculated. The data were subjected to one-way analysis of variance (ANOVA) using a possibility value of P<0.05. Tukey’s test was used to identify significant differences between means among the different treatments (GraphPad Prim 5 software) (12).

4. Results

The results for antitrichomonal activity are shown in tables 1 and 2 and figures 1, 2 and 3. Moderate activity was observed with the mango and blueberry extracts. Mango and blueberry extracts showed cytotoxic effects against the T. vaginalis tested. It was elucidated from this study that blueberry extract showed higher cytotoxicity than mango. The blueberry presented the highest anti-Trichomonas vaginalis activity than mango at all concentrations that was tested in this study.

Table 1. Anti-Trichomonal activity (IC₅₀), cytotoxic activity on vero cells (CC₅₀) and selective index (SI) of mango and blueberry extracts, Metronidazole, Tinidazole (mean ±SD:n=3).

<table>
<thead>
<tr>
<th>Sample</th>
<th>IC₅₀ (µg·mL⁻¹)</th>
<th>CC₅₀ (µg·mL⁻¹)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metronidazole</td>
<td>0.047</td>
<td>70.23</td>
<td>1494.25</td>
</tr>
<tr>
<td>Tinidazole</td>
<td>0.02</td>
<td>73.27</td>
<td>3650</td>
</tr>
<tr>
<td>Mango</td>
<td>118.3</td>
<td>58060</td>
<td>490.78</td>
</tr>
<tr>
<td>Blueberry</td>
<td>60.74</td>
<td>37319</td>
<td>612.79</td>
</tr>
</tbody>
</table>

Figure 1. Cytotoxicity against the Trichomonas vaginalis after treatment with mango extract at concentrations. Data is showing mean±standard deviation of at least three experiments. Letters (a, b, c, d) at the same concentration is showing significant differences among the compounds (P-value <0.05).

Figure 2. Cytotoxicity against the Trichomonas vaginalis after treatment with blueberry extract at different concentrations. Data is showing mean±standard deviation of at least three experiments. Letters (a, b, c, d) at the same concentration is showing significant differences among the compounds (P-value <0.05).

Figure 3. Cytotoxicity of mango and blueberry extracts against the Trichomonas vaginalis in 24hr. Data represents mean±SD of at least three experiments.
Studies have shown that the mango kernel also contains saponins, flavonoids, glycosides, tannins, and alkaloids (15), while the alkaloids have antiparasitic properties. Alkaloids have anticancer, antihelminthic and antiparasitic properties. The study conducted in 2010 by Jasminer and colleagues, have shown that the mango kernel has antibacterial effects and showed that MIC values of mango extract is less than 4.7 micrograms per milliliter (15). In a study carried out in 1994 by Ponce and colleagues, mango extract was shown to have significant antiprotozoan parasite Giardia lamblia activity (16). In a study done by Sunday et al. in 2005, antityrpanosoma activity of mango tree root extract was reported (17).

Blueberries contain large amounts of phenolic compounds such as flavonoids, tannins, and anthocyanins (18). Anthony et al. at 2007 studied the effect of blueberry extract on Giardia lamblia and showed the polyphenolic and anthocyanin compounds as active ingredients that kill the parasite trophozoite (19).

In this study, the polyphenolic compounds had lethal effect on parasite. In our study, after treatment of parasites with mango and blueberry extracts, it was observed that with increasing concentration and time, there was reduction in survival and reproduction of the parasite. Since this study did not determine active compounds in extracts, based on the studies by other researchers on mango kernel extracts, it is likely that antitrichomomas activity of mango kernel extract is due to the polyphenolic compounds and alkaloids found in it.

In this study, the effect of blueberry extract on Trichomonas was much stronger than the mango kernel extract; this is perhaps due to that the amount of phenolic compounds presented in it, is higher than mango.

Conflicts of Interests

Authors of this paper declare they have no conflict of interests.

Acknowledgements

Authors of this paper thank Dr Gaffareifar.

Authors’ Contribution

All authors contribute in writing different parts of this manuscript.

Funding/Support

This study was supported by Faculty of Medical Sciences Tarbiat Modares University.

References


Figure 4. Cytotoxicity of mango and blueberry extracts against the trichomomas vaginalis in 48hr. Data is showing mean±SD of at least three experiments.

Discussion

The standard dose of metronidazole resistance in T. vaginalis is rising, and due to the side effects of metronidazole, related research is in progress to find an effective treatment for T. vaginalis (12). Thus, numerous important studies on herbal remedies are being carried out that include fewer side effects on the body, cheapness and availability, adverse effects of drugs such as metronidazole adverse effects on children and pregnant women. Mango is a tropical fruit in many areas of the world and also among the products that are cultivated in southern Iran. Gas chromatography has previously shown that the ethanolic extract of mango kernel contains several phenolic and alkaloids compounds (13). Flavonoids and other phenolic compounds in plants are widely spread. Their various properties including antioxidant, antibacterial, and anti-inflammatory effects have been reported in many studies (14).


26
