Volume 11, Issue 2 (2025)                   IEM 2025, 11(2): 123-133 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Roozbehani M, Keyvani H, Tabibzadeh A, Bokharaei-Salim F, Mousavizadeh L. SARS-CoV-2 Omicron: Genotyping, Mutational Analysis, and Characterization of Subvariants in Iran. IEM 2025; 11 (2) :123-133
URL: http://iem.modares.ac.ir/article-4-76658-en.html
1- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
2- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
3- Immunoassay Development, Fellowship of Clinical Laboratory Science, Laboratory Director and Chief Medical Laboratory Scientist, Shahid Rajaee Hospital and Training Center, Laboratory Medicine Department, Karaj, Iran
4- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran. Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , Mousavizadeh.l@iums.ac.ir
Abstract:   (696 Views)
Background: Several SARS-CoV-2 variants with distinct characteristics have emerged, with Omicron sub-variants such as BA.1 to BA.5 being predominant since late 2021. Distinguishing sub-variants using phylogenetic and molecular analyzes provides a valuable approach in the context of epidemiological research.
Materials & Methods: Molecular epidemiology and sub-variants of SARS-CoV-2 omicron were investigated using 150 nasopharyngeal samples from COVID-19 patients in Tehran (Iran) from May 2022 to August 2023.
Omicron lineages were differentiated using RT-PCR targeting Q493R, L452R, and ∆69-70 spike mutations. SARS-CoV-2 omicron sub-variants were determined by amplicon sequencing.
Findings: The mean age of the study participants was 44±7 years, comprising 38.6% males and 61.4%
females , which may have an effect on transmission and susceptibility of different ages. Also, 117 (78%) samples were positive for one of the three lineages, while 33 (22%) was none of the lineages, which were referred to as conclusive and inconclusive results, respectively. 60.7% of the samples was the omicron lineage BA.4 or BA.5.
Conclusion: Considering the prevalence of BA.4 and BA.5 in the study population and their differences with the
parental SARS-CoV-2 variant, the primary vaccine seems to be not effective against the current omicron sub-variants. These results underscore the importance of vaccination as a critical strategy to prevent the spread of these variants. The suggested primer sets could be an easy way to screen sample variants and lineages and are useful for screening and sequencing samples in countries with limited resources. Continuous monitoring of omicron sub-variants is recommended for preventing the resurgence of COVID-19.

 
Full-Text [PDF 564 kb]   (56 Downloads)    
Article Type: Original Research | Subject: Virology
Received: 2024/08/21 | Accepted: 2025/02/14 | Published: 2025/04/21

References
1. Gdoura M, Abouda I, Mrad M, Ben Dhifallah I, Belaiba Z, Fares W, et al. SARS-CoV-2 RT-PCR assays: In vitro comparison of 4 WHO approved protocols on clinical specimens and its implications for real laboratory practice through variant emergence. Virol J. 2022;19(1):54. [DOI:10.1186/s12985-022-01784-4] [PMID] []
2. Mousavizadeh L, Soltani R, Abedini K, Ghasemi S. The relation of the viral structure of SARS-CoV-2, high-risk condition, and plasma levels of IL-4, IL-10, and IL-15 in COVID-19 patients compared to SARS and MERS infections. Curr Mol Med. 2022;22(7):584-93. [DOI:10.2174/1566524021666211004110101] [PMID]
3. Roozbehani M, Keyvani H, Razizadeh M, Yousefi P, Gholami A, Tabibzadeh A, et al. LZTFL1 rs17713054 polymorphism as an indicator allele for COVID-19 severity. Mol Gen Microbiol Virol. 2023;38(2):124-8. [DOI:10.3103/S0891416823020088]
4. Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J. 2021;18(1):1-21. [DOI:10.1186/s12985-021-01633-w] [PMID] []
5. Duong D. Alpha, beta, delta, gamma: What's important to know about SARS-CoV-2 variants of concern? CMAJ. 2021:193(27):E1059-60. [DOI:10.1503/cmaj.1095949] [PMID] []
6. Roozbehani M, Razizadeh MH, Keyvani H, Nejati F, Soleymani S, Mousavizadeh L. Expression pattern of cholesterol 25-hydroxylase and serum level of 25-hydroxycholesterol and relevant inflammatory cytokines in patients with varying disease severity of COVID-19. Viral Immunol. 2023;36(9):610-6. [DOI:10.1089/vim.2023.0051] [PMID]
7. Leung KS, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom. Eurosurveillance. 2021;26(1):2002106. [DOI:10.2807/1560-7917.ES.2020.26.1.2002106] [PMID] []
8. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. [DOI:10.1126/science.abg3055] [PMID] []
9. Earnest R, Uddin R, Matluk N, Renzette N, Turbett SE, Siddle KJ, et al. Comparative transmissibility of SARS-CoV-2 variants delta and alpha in New England, USA. Cell Rep Med. 2022;3(4):100583. [DOI:10.1016/j.xcrm.2022.100583] [PMID] []
10. Pyke AT, Nair N, van den Hurk AF, Burtonclay P, Nguyen S, Barcelon J, et al. Replication kinetics of B.1.351 and B.1.1.7 SARS-CoV-2 variants of concern including assessment of a B.1.1.7 mutant carrying a defective ORF7a gene. Viruses. 2021:13(6):1087. [DOI:10.3390/v13061087] [PMID] []
11. Lupala CS, Ye Y, Chen H, Su XD, Liu H. Mutations on RBD of SARS-CoV-2 omicron variant result in stronger binding to human ACE2 receptor. Biochem Biophys Res Commun. 2022;590:34-41. [DOI:10.1016/j.bbrc.2021.12.079] [PMID] []
12. Shrestha LB, Foster C, Rawlinson W, Tedla N, Bull RA. Evolution of the SARS‐CoV‐2 omicron variants BA. 1 to BA. 5: Implications for immune escape and transmission. Rev Med Virol. 2022;32(5):e2381. [DOI:10.1002/rmv.2381] []
13. Joung SY, Ebinger JE, Sun N, Liu Y, Wu M, Tang AB, et al. Awareness of SARS-CoV-2 omicron variant infection among adults with recent COVID-19 seropositivity. JAMA Netw Open. 2022;5(8):e2227241. [DOI:10.1001/jamanetworkopen.2022.27241] [PMID] []
14. Lyngse FP, Kirkeby CT, Denwood M, Christiansen LE, Mølbak K, Møller CH, et al. Transmission of SARS-CoV-2 omicron VOC subvariants BA.1 and BA.2: Evidence from Danish households. MedRxiv. 2022. [DOI:10.1101/2022.01.28.22270044]
15. Wang Q, Guo Y, Iketani S, Nair MS, Li Z, Mohri H, et al. Antibody evasion by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4, and BA.5. Nature. 2022;608(7923):603-8. [DOI:10.1038/s41586-022-05053-w] [PMID] []
16. Colson P, Fournier PE, Delerce J, Million M, Bedotto M, Houhamdi L, et al. Culture and identification of a "Deltamicron" SARS‐CoV‐2 in a three cases cluster in southern France. J Med Virol. 2022;94(8):3739-49. [DOI:10.1002/jmv.27789] [PMID] []
17. Mohapatra RK, Kandi V, Tuli HS, Chakraborty C, Dhama K. The recombinant variants of SARS-CoV-2: Concerns continues amid COVID-19 pandemic. J Med Virol. 2022;94(8):3506-8. [DOI:10.1002/jmv.27780] [PMID] []
18. Zappa M, Verdecchia P, Angeli F. Severe acute respiratory syndrome coronavirus 2 evolution: How mutations affect XBB.1.5 variant. Eur J Intern Med. 2023;112:128-32. [DOI:10.1016/j.ejim.2023.03.027] [PMID] []
19. Giancotti R, Lomoio U, Puccio B, Tradigo G, Vizza P, Torti C, et al. The omicron XBB.1 variant and its descendants: Genomic mutations, rapid dissemination, and notable characteristics. Biology. 2024;13(2):90. [DOI:10.3390/biology13020090] [PMID] []
20. Islam MR, Shahriar M, Bhuiyan MA. The latest omicron BA.4 and BA.5 lineages are frowning toward COVID-19 preventive measures: A threat to global public health. Health Sci Rep. 2022;5(6):e884. [DOI:10.1002/hsr2.884] [PMID] []
21. Tegally H, Moir M, Everatt J, Giovanetti M, Scheepers C, Wilkinson E, et al. Emergence of SARS-CoV-2 omicron lineages BA.4 and BA.5 in South Africa. Nat Med. 2022;28(9):1785-90. [DOI:10.1038/s41591-022-01911-2] [PMID] []
22. Akash S, Islam MR, Dhama K. Emergence BQ.1 and BQ.1.1 as newly identified omicron subvariants: Current scenario and future outlook - an update. Ann Med Surg. 2023;85(4):1329-30. [DOI:10.1097/MS9.0000000000000469] [PMID] []
23. Philip AM, Ahmed WS, Biswas KH. Reversal of the unique Q493R mutation increases the affinity of omicron S1-RBD for ACE2. Comput Struct Biotechnol J. 2023;21:1966-77. [DOI:10.1016/j.csbj.2023.02.019] [PMID] []
24. Camacho J, Zulaica J, Giménez E, Rusu L, Velandia-Álvarez S, Albert E, et al. Neutralizing antibodies against omicron BA.4/5 after COVID-19 vaccination in SARS-CoV-2 experienced versus naïve individuals in the general population. J Infect. 2023;86(3):256-308. [DOI:10.1016/j.jinf.2022.12.029] [PMID] []
25. Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog. 2022;18(2):e1010260. [DOI:10.1371/journal.ppat.1010260] [PMID] []
26. Vogels CB, Breban MI, Ott IM, Alpert T, Petrone ME, Watkins AE, et al. Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLoS Biol. 2021;19(5):e3001236. [DOI:10.1371/journal.pbio.3001236] [PMID] []
27. Tan CW, Lim BL, Young BE, Yeoh AY, Yung CF, Yap WC, et al. Comparative neutralisation profile of SARS-CoV-2 omicron subvariants BA.2.75 and BA.5. Lancet Microb. 2022;3(12):e898. [DOI:10.1016/S2666-5247(22)00220-8] [PMID]
28. Colson P, Gaulret P, Delerce J, Chaudet H, Pontarotti P, Forterre P, et al. The emergence, spread, and vanishing of a French SARS-CoV-2 variant exemplifies the fate of RNA virus epidemics and obeys the Mistigri rule. J Med Virol. 2023;95(1):e28102. [DOI:10.1002/jmv.28102] [PMID] []
29. Hirotsu Y, Maejima M, Shibusawa M, Natori Y, Nagakubo Y, Hosaka K, et al. Classification of omicron BA.1, BA.1.1, and BA.2 sublineages by TaqMan assay consistent with whole genome analysis data. Int J Infect Dis. 2022;122:486-91. [DOI:10.1016/j.ijid.2022.06.039] [PMID] []
30. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, Zhou D, Ginn HM, Selvaraj M, et al. Antibody escape of SARS-CoV-2 omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell. 2022;185(14):2422-33. [DOI:10.1016/j.cell.2022.06.005] [PMID] []
31. Zhang Y, Zhang T, Fang Y, Liu J, Ye Q, Ding L. SARS-CoV-2 spike L452R mutation increases omicron variant fusogenicity and infectivity as well as host glycolysis. Signal Transduct Target Ther. 2022;7(1):76. [DOI:10.1038/s41392-022-00941-z] [PMID] []
32. Bin Manjur OH, Afrad MH, Khan MH, Hossain M, Kawser Z, Alam AN, et al. Genome sequences of 25 SARS-CoV-2 sublineage B. 1.1. 529 omicron strains in Bangladesh. Microbiol Resour Announc. 2022;11(4):e00119-22. [DOI:10.1128/mra.00119-22] [PMID] []
33. Emmelot ME, Vos M, Boer MC, Rots NY, van Els CA, Kaaijk P. SARS-CoV-2 omicron BA. 4/BA. 5 mutations in spike leading to T cell escape in recently vaccinated individuals. Viruses. 2022;15(1):101. [DOI:10.3390/v15010101] [PMID] []
34. Quarleri J, Galvan V, Delpino MV. Omicron variant of the SARS-CoV-2: A quest to define the consequences of its high mutational load. Geroscience. 2022;44(1):53-6. [DOI:10.1007/s11357-021-00500-4] [PMID] []
35. Phan T, Boes S, McCullough M, Gribschaw J, Marsh J, Harrison LH, et al. Development of a one-step qualitative RT-PCR assay to detect the SARS-CoV-2 omicron (B. 1.1. 529) variant in respiratory specimens. J Clin Microbiol. 2022;60(3):e00024-22. [DOI:10.1128/jcm.00024-22] [PMID] []
36. Yadav PD, Patil DY, Sahay RR, Shete AM, Mohandasa S, Nair V. The impact of omicron on the COVID-19 vaccines: A review. Vacunas. 2024;25(2):274-84. [DOI:10.1016/j.vacun.2024.02.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.