Volume 4, Issue 1 (2018)                   IQBQ 2018, 4(1): 5-12 | Back to browse issues page

XML Print


1- PhD Laboratory of Natural Sciences and Materials, University Center Abdelhafid Boussouf, Mila, ‎Algeria ‎ , a.boubendir@centre-univ-mila.dz
2- PhD Laboratory of Natural Sciences and Materials, University Center Abdelhafid Boussouf, Mila, ‎Algeria ‎
Abstract:   (328 Views)
Aims: There are few data regarding the prevalence and trends of Klebsiella pneumoniae antibiotic resistance in Algeria. The present study was conducted to investigate the spatial distribution of K. pneumoniae antibiotic resistance phenotypes in time and according to specimen source.   
Materials & Methods: This retrospective study was performed between January 2011 and December 2015 at Mila Hospital, Algeria. A total of 172 K. pneumoniae were isolated from consulting and hospitalized patients, and their antimicrobial susceptibility was tested. The Principal Component Analysis (PCA) was used to study correlations among antimicrobial resistance phenotypes observed, and Factorial Correspondence Analysis (FCA) was used to study the spatial distribution of antibiotic resistance phenotypes according to specimen source.
Findings: The specimens were obtained from urine (n=89), vagina (n=39), pus (n=33), blood (n=9) and surgery (n=2). PCA showed two principals associations of resistance phenotypes gathered in two clusters. The first profile regroups amoxicillin-clavulanic acid, cefazolin and ampicillin. The second assembles cefotaxime, nalidixic acid and sulfamethoxazole-trimethoprim. In FCA, nalidixic acid was connected with urine specimens, registering maximum resistance (52.8%) compared to the other samples. Vagina specimens were associated to sulfamethoxazole-trimethoprim and colistin phenotypes registering maximum resistances with 89.7 and 76.9%, respectively. Pus manifested a near association to cefotaxime with a maximum resistance (48.5%).
Conclusion: The model developed in FCA, highlights typical associations of antibiotic resistance phenotypes to specimen source and confirms the difference in resistance profile according the source of specimen in K. pneumoniae infections.
Full-Text [PDF 393 kb]   (48 Downloads)    

Received: 2017/12/23 | Accepted: 2018/05/27 | Published: 2018/05/27
* Corresponding Author Address: University Center Abdelhafid Boussouf, RP. 26, Mila. 43000, Algeria.‎

References
1. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns ‎of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris). ‎‎2013;61(5):209-16.‎ [Link] [DOI:10.1016/j.patbio.2012.10.004]
2. Jiang Y, Yu D, Wei Z, Shen P, Zhou ZH, Yu Y. Complete nucleotide sequence of klebsiella pneumoniae ‎multidrug resistance Plasmid pK048, carrying blaKPC-2, blaDHA-1, qnrB4, and armA. Antimicrob Agents ‎Chemother. 2010;54(9):3967-9.‎ [Link]
3. Shahid M, Malik A, Akramb M, Agrawal LM, Khan AU, Agrawal M. Prevalent phenotypes and antibiotic ‎resistance in Escherichia coli and Klebsiella pneumoniae at an Indian tertiary care hospital: Plasmid-‎mediated cefoxitin resistance. Int J Infect Dis. 2008;12(3):256-64.‎ [Link] [DOI:10.1016/j.ijid.2007.08.008]
4. Kumar V, Sun P, Vamathevan J, Li Y, Ingraham K, Palmer L, et al. Comparative genomics of Klebsiella ‎pneumoniae strains with different antibiotic resistance profiles. Antimicrob Agents Chemother. ‎‎2011;55(9):4267-76. ‎ [Link]
5. El Bouamri MC, Arsalane L, El Kamouni Y, Zouhair S. Antimicrobial susceptibility of urinary Klebsiella ‎pneumoniae and the emergence of carbapenem-resistant strains: A retrospective study from a university ‎hospital in Morocco, North Africa. Afr J Urol. 2015;21(1):36-40.‎ [Link] [DOI:10.1016/j.afju.2014.10.004]
6. Cao X, Xu X, Zhang Zh, Shen H, Chen J, Zhang K. Molecular characterization of clinical multidrug-resistant ‎Klebsiella pneumoniae isolates. Ann Clin Microbiol Antimicrob. 2014;13:16.‎ [Link] [DOI:10.1186/1476-0711-13-16]
7. Kumar R, Dahiya SS, Hemwani K, Srivastava P. Isolation of human pathogenic bacteria causing urinary ‎tract infection and their antimicrobial susceptibility pattern in a tertiary care hospital, Jaipur, India. Int Res J ‎Med Sci. 2014;2(6):6-10.‎ [Link]
8. Al-Tawfiq JA, Antony A. Antimicrobial resistance of Klebsiella pneumoniae in a Saudi Arabian hospital: ‎Results of a 6-year surveillance study, 1998-2003. J Infect Chemother. 2007;13(4):230-4.‎ [Link] [DOI:10.1007/s10156-007-0532-9]
9. Hernández JM, Conforti P. Use of multivariate analysis to compare antimicrobial agents on the basis of in ‎vitro activity data. Antimicrob Agents Chemother. 1994;38(2):184-8.‎ [Link] [DOI:10.1128/AAC.38.2.184]
10. Bonnet R, Cavallo JD, Chardon H, Chidiac C, Courvalin P, Dabernat H, et al. Antibiogram Committee of the ‎French Society of Microbiology [Internet]. Paris: Société Française de Microbiologie; 2010 [Cited 2018 May ‎‎15]. Available from: http://www.sfm-microbiologie.org/UserFiles/files/casfm_2010.pdf.‎ [Link]
11. Jain A, Mondal R. TEM & SHV genes in extended spectrum beta-lactamase producing Klebsiella species ‎beta their antimicrobial resistance pattern. Indian J Med Res. 2008;128(6):759-64.‎ [Link]
12. Poole K. Resistance to β-lactam antibiotics. Cell Mol Life Sci. 2004;61(17):2200-23.‎ [Link]
13. Pérez-Moreno MO, Centelles-Serrano MJ, Cortell-Ortolá M, Fort-Gallifa I, Ruiz J, Llovet-Lombarte MI, et al. ‎Molecular epidemiology and resistance mechanisms involved in reduced susceptibility to ‎amoxicillin/clavulanic acid in Klebsiella pneumoniae isolates from a chronic care centre. Int J Antimicrob ‎Agents. 2011;37(5):462-6.‎ [Link]
14. Haldorsen BC, Simonsen GS, Sundsfjord A, Samuelsen O, Norwegian Study Group on Aminoglycoside ‎Resistance. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and ‎Klebsiella spp. in Norway is associated with the acquisition of AAC(3)-II and AAC(6')-Ib. Diagn Microbiol ‎Infect Dis. 2014;78(1):66-9.‎ [Link]
15. Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants and mobile enetic elements of ‎an NDM-1-encoding Klebsiella pneumoniae strain. PLoS One. 2014;9(6):e99209.‎ [Link] [DOI:10.1371/journal.pone.0099209]
16. Cannatelli A, D'Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, et al. In vivo emergence of colistin ‎resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional ‎inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob Agents Chemother. 2013;57(11):5521-6.‎ [Link]
17. Ben Haj Khalifa A, Khedher M. Epidemiological study of Klebsiella spp. uropathogenic strains producing ‎extended-spectrum β-lactamase in a Tunisian university hospital 2009. Pathol Biol. 2012;60(2):e1-5. ‎‎[French]‎ [Link]
18. Tlamçani Z, Ellaia K, Benomar A, Kabbaj H, Alaoui AE, Seffar M. Resistance to fluoroquinolone among ‎Klebsiella spp. strains producing extended-spectrum betalactamases isolated from urines. Annales de ‎Biologie Clinique. 2009;67(5):553-6. [French]‎ [Link]
19. Mumtaz S, Ahmad M, Aftab I, Akhtar N, ul Hassan M, Hamid A. Aerobic vaginal pathogens and their ‎sensitivity pattern. J Ayub Med Coll Abbottabad. 2008;20(1):113-7.‎ [Link]
20. Parisi SG, Bartolini A, Santacatterina E, Castellani E, Ghirardo R, Berto A, et al. Prevalence of Klebsiella ‎pneumoniae strains producing carbapenemases and increase of resistance to colistin in an Italian teaching ‎hospital from January 2012 to December 2014. BMC Infect Dis. 2015;15:244.‎ [Link]
21. Kumar AR. Antimicrobial sensitivity pattern of Klebsiella pneumoniae isolated from pus from tertiary ‎care hospital and issues related to the rational selection of antimicrobials. J Chem Pharm Res. ‎‎2013;5(11):326-31.‎ [Link]
22. Hussain T, Jamal M, Nighat F, Andleeb S. 3rd Generation cephalosporin resistance in Klebsiella ‎pneumoniae from pus samples. World J Zool. 2014;9(4):276-80. ‎ [Link]
23. Mosqueda-Gómez JL, Monta-o-Loza A, Rolón AL, Cervantes C, Bobadilla-del-Valle JM, Silva-Sánchez J, et ‎al. Molecular epidemiology and risk factors of bloodstream infections caused by extended-spectrum β-‎lactamase-producing Klebsiella pneumoniae A case-control study. Int J Infect Dis. 2008;12(6):653-9.‎ [Link] [DOI:10.1016/j.ijid.2008.03.008]
24. Ortega M, Marco F, Soriano A, Almela M, Martínez JA, López J, et al. Cefotaxime resistance and outcome of ‎Klebsiella spp. bloodstream infection. Eur J Clin Microbiol Infect Dis. 2011;30(12):1599-605.‎ [Link]
25. Wang X, Kammerer CM, Anderson S, Lu J, Feingold E. A comparison of principle component analysis and ‎factor analysis strategies for uncovering pleiotropic factors. Genet Epidemiol. 2009;33(4):325-31.‎ [Link] [DOI:10.1002/gepi.20384]