Volume 4, Issue 4 (2018)                   IEM 2018, 4(4): 115-121 | Back to browse issues page

XML Print


1- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , alishivaee1212@gmail.com
2- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
3- Antimicrobial Resistance Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Abstract:   (5222 Views)
Aims:  Uropathogenic Escherichia coli (UPEC) is one of the most important causative agents of urinary tract infection (UTI). UPEC isolates persist in the body through biofilm formation. The successful adhesion is the most important step of biofilm formation. Type 1 and P are bacterial surface appendices, which play a pivotal role in of UPEC. The aim of this study was to assess the effect of on the initial adhesion gene expression in UPEC isolates.
Materials & Methods: The presence of and genes among 60 UPEC isolates was investigated by PCR; 5 potent producer UPEC strains from patients with UTI were exposed to the sub-minimum inhibitory concentration of Expression of the and genes was evaluated by real-time PCR.
Findings: Of the 60 UPEC isolates, biofilm formation was seen in 27 (45%) of isolates, 5 of which produced strong The result of PCR assay showed that was seen in 57 (95%) of the 60 UPEC isolates and was seen in 58 (96.6%) of isolates, respectively. and expression 7 and 8 fold in all 5 isolates, respectively.
Conclusion: Sub-MIC concentrations of remarkably decreased the expression the and genes in strong forming UPEC strains, but cannot prevent biofilm formation.
Full-Text [PDF 703 kb]   (1287 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2018/01/26 | Accepted: 2018/10/6 | Published: 2018/12/20

References
1. Eberly AR, Floyd KA, Beebout CJ, Colling SJ, Fitzgerald MJ, Stratton CW, et al. Biofilm formation by uropathogenic Escherichia coli is favored under oxygen conditions that mimic the bladder environment. Int J Mol Sci. 2017;18(10). pii:E2077. [Link] [DOI:10.3390/ijms18102077]
2. Kennedy EH, Greene MT, Saint S. Estimating hospital costs of catheter‐associated urinary tract infection. J Hosp Med. 2013;8(9):519-22. [Link] [DOI:10.1002/jhm.2079]
3. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306. [Link] [DOI:10.1101/cshperspect.a010306]
4. Lejeune P. Contamination of abiotic surfaces: What a colonizing bacterium sees and how to blur it. Trends Microbiol. 2003;11(4):179-84. [Link] [DOI:10.1016/S0966-842X(03)00047-7]
5. Arciola CR, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397-409. [Link] [DOI:10.1038/s41579-018-0019-y]
6. Huang Y, Smith BS, Chen LX, Baxter RH, Deisenhofer J. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci U S A. 2009;106(18):7403-7. [Link] [DOI:10.1073/pnas.0902789106]
7. Lugmaier RA, Schedin S, Kühner F, Benoit M. Dynamic restacking of Escherichia coli P-pili. Eur Biophys J. 2008;37(2):111-20. [Link] [DOI:10.1007/s00249-007-0183-x]
8. Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011;59(5):2056-61. [Link] [DOI:10.1021/jf104402t]
9. Lai PK, Roy J. Antimicrobial and chemopreventive properties of herbs and spices. Curr Med Chem. 2004;11(11):1451-60. [Link] [DOI:10.2174/0929867043365107]
10. Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. Retracted: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol. 2010;79(3):330-8. [Link] [DOI:10.1016/j.bcp.2009.09.003]
11. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm. 2007;4(6):807-18. [Link] [DOI:10.1021/mp700113r]
12. Na HS, Cha MH, Oh DR, Cho CW, Rhee JH, Kim YR. Protective mechanism of curcumin against Vibrio vulnificus infection. FEMS Immunol Med Microbiol. 2011;63(3):355-62. [Link] [DOI:10.1111/j.1574-695X.2011.00855.x]
13. Asadi RF, Ranji N, Faezi GM. Nanocurcumin effect on drug resistant strains of Pseudomonas aeruginosa. 2015;64(12):2513-22. [Persian] [Link]
14. Shakerimoghaddam A, Ghaemi E, Jamali A. Effects of ZnO nanoparticles on initial adhesion and fimH gene expression in uropathogenic Eschercia coli. J Clin Basic Res. 2017;1(3):25-8. [Link]
15. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol Microbiol. 1998;28(3):449-61. [Link] [DOI:10.1046/j.1365-2958.1998.00797.x]
16. Samet M, Ghaemi E, Jahanpur Sh, Jamalli A. Evaluation of biofilm-forming capabilities of urinary Escherichia coli isolates in microtiter plate using two different culture media. Int J Mol Clin Microbiol. 2013;3(1):244-7. [Link]
17. Zhou M, Guo Z, Yang Y, Duan Q, Zhang Q, Yao F, et al. Flagellin and F4 fimbriae have opposite effects on biofilm formation and quorum sensing in F4ac+ enterotoxigenic Escherichia coli. Vet Microbiol. 2014;168(1):148-53. [Link] [DOI:10.1016/j.vetmic.2013.10.014]
18. Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Anal. 2011;2(1):21-33. [Link]
19. Lee JH, Subhadra B, Son YJ, Kim DH, Park HS, Kim JM, et al. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Lett Appl Microbiol. 2016;62(1):84-90. [Link] [DOI:10.1111/lam.12517]
20. Farmer K, James A, Naraine R, Dolphin G, Sylvester W, Amadi V, et al. Urinary tract infection Escherichia coli is related to the environmental Escherichia coli in their DNA barcoding and antibiotic resistance patterns in Grenada. Adv Microbiol. 2016;6(1):33-46. [Link] [DOI:10.4236/aim.2016.61004]
21. Shahbazi S, Asadi Karam MR, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. J Glob Antimicrob Resist. 2018;14:118-25. [Link] [DOI:10.1016/j.jgar.2018.03.006]
22. Gheidar H, Haddadi A, Sadeghi Kalani B, Amirmozafari N. Nanoparticles impact the expression of the genes involved in biofilm formation in S. aureus, a model antimicrobial-resistant species. J Med Bacteriol. 2018;7(3-4):30-41. [Link]
23. Kline KA, Dodson KW, Caparon MG, Hultgren SJ. A tale of two pili: Assembly and function of pili in bacteria. Trends Microbiol. 2010;18(5):224-32. [Link] [DOI:10.1016/j.tim.2010.03.002]
24. Derakhshandeh A, Firouzi R, Motamedifar M, Arabshahi S, Novinrooz A, Boroojeni AM, et al. Virulence characteristics and antibiotic resistance patterns among various phylogenetic groups of uropathogenic Escherichia coli isolates. Jpn J Infect Dis. 2015;68(5):428-31. [Link] [DOI:10.7883/yoken.JJID.2014.327]
25. Bahalo S, Tajbakhsh E, Tajbakhsh S, Momeni M, Tajbakhsh F. Detection of some virulence factors of Escherichia coli isolated from urinary tract infection isolated of children in Shahrekord Iran by multiplex PCR. 2013;14(1):29-32. [Persian] [Link]
26. Mahdikhani M, Peymani A, Naserpour Farivar T, Aslanimehr M. Frequency of P and type 1 fimbriae-encoding genes among uropathogenic Escherichia coli isolated from hospitalized patients in Qazvin and Karaj hospitals. J Qazvin Univ Med Sci. 2015;19(3):35-40. [Persian] [Link]
27. Kaczmarek A, Budzynska A, Gospodarek E. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains. J Med Microbiol. 2012;61(Pt 10):1360-5. [Link] [DOI:10.1099/jmm.0.044263-0]
28. Tarchouna M, Ferjani A, Ben-Selma W, Boukadida J. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int J Infect Dis. 2013;17(6):e450-3. [Link] [DOI:10.1016/j.ijid.2013.01.025]
29. Momtaz H, Karimian A, Madani M, Safarpoor Dehkordi F, Ranjbar R, Sarshar M, et al. Uropathogenic Escherichia coli in Iran: Serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob. 2013;12:8. [Link] [DOI:10.1186/1476-0711-12-8]
30. Karimian A, Momtaz H, Madani M. Detection of uropathogenic Escherichia coli virulence factors in patients with urinary tract infections in Iran. Afr J Microbiol Res. 2012;6(39):6811-6. [Link] [DOI:10.5897/AJMR12.1462]
31. Arabi S, Tohidi F, Naderi S, Nazemi A, Jafarpour M, Naghshbandi R. The common fimbarie genotyping in uropathogenic Escherichia coli. 2012;3(10):4951-4. [Link]
32. Keren R, Shaikh N, Pohl H, Gravens-Mueller L, Ivanova A, Zaoutis L, et al. Risk factors for recurrent urinary tract infection and renal scarring. Pediatrics. 2015;136(1):e13-21. [Link] [DOI:10.1542/peds.2015-0409]
33. Agarwal J, Mishra B, Srivastava S, Srivastava R. Genotypic characteristics and biofilm formation among Escherichia coli isolates from Indian women with acute cystitis. Trans R Soc Trop Med Hyg. 2013;107(3):183-7. [Link] [DOI:10.1093/trstmh/trs090]
34. Tiba MR, Yano T, Leite Dda S. Genotypic characterization of virulence factors in Escherichia coli strains from patients with cystitis. Revista do Instituto de Medicina Tropical de São Paulo. 2008;50(5):255-60. [Link] [DOI:10.1590/S0036-46652008000500001]
35. Haukvik T, Bruzell E, Kristensen S, Tønnesen HH. Photokilling of bacteria by curcumin in different aqueous preparations, studies on curcumin and curcuminoids XXXVII. Pharmazie. 2009;64(10):666-73. [Link]
36. Negi PS, Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297-300. [Link] [DOI:10.1021/jf990308d]
37. Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246-50. [Link] [DOI:10.1177/0748233713498458]
38. Kali A, Bhuvaneshwar D, Charles PMV, Seetha KS. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J Basic Clin Pharm. 2016;7(3):93-6. [Link] [DOI:10.4103/0976-0105.183265]
39. Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens. 2014;3(3):596-632. [Link] [DOI:10.3390/pathogens3030596]
40. Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453-60. [Link] [DOI:10.1016/j.foodchem.2012.08.002]
41. Packiavathy IA, Sasikumar P, Pandian SK, Veera Ravi A. Prevention of quorum-sensing-mediated biofilm development and virulence factors production in Vibrio spp. by curcumin. Appl Microbiol Biotechnol. 2013;97(23):10177-87. [Link] [DOI:10.1007/s00253-013-4704-5]
42. Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem. 2008;56(6):1955-62. [Link] [DOI:10.1021/jf072591j]
43. Loo CY, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, et al. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem. 2016;64(12):2513-22. [Link] [DOI:10.1021/acs.jafc.5b04559]
44. Amalaradjou MA, Narayanan A, Venkitanarayanan K. Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression. J Urol. 2011;185(4):1526-31. [Link] [DOI:10.1016/j.juro.2010.11.078]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.