Impact of Serum 25(OH) D Levels on Immune Responses to Hepatitis B Virus Vaccination in Healthy Adults: A Cross-Sectional Study in Mane and Samalghan City, Iran

ARTICLE INFO

Article Type

Original Article

Authors

Mostafa Roshanravani, INST†
Zakheh Amini, INST†
Mohammadreza Safdarz, MD‡
Sahar Kamel, MD‡
Seyed Mohammad javadzadeh, MSc§
Hasan Namdar Ahmadabad, PhD*†

†Department of Nursing, Faculty of Nursing, North Khorasan University of Medical Sciences, Bojnour, Iran
‡Department of Orthopedic Surgery, North Khorasan University of Medical Sciences, Bojnour, Iran
§Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnour, Iran
*Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
§Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnour, Iran.

Correspondence

Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnour, Iran.
E-mail: h.namdar@nkums.ac.ir

ABSTRACT

Backgrounds: Several studies have elucidated vitamin D as an important immunomodulatory factor regulating immune responses to different viral infections and vaccines. This study aimed to evaluate the impact of 25(OH) D serum levels on immune responses to hepatitis B virus (HBV) vaccine.

Materials & Methods: This study was conducted on 134 healthy individuals aged 18-35 years, referring to health centers for HBV vaccination in Mane and Samalghan city in North Khorasan, Iran from June to September 2021. Demographic data were collected through a questionnaire. Serum 25(OH) D levels were analyzed using commercial sandwich ELISA kits. Anti-hepatitis B surface antibody (anti-HBsAb) levels were determined in blood samples 4-6 weeks post-vaccination.

Findings: The prevalence of vitamin D deficiency and insufficiency among the participants was 43.6% and 34.3%, respectively. The level of 25(OH) D was insignificantly higher in women than in men. There was no significant association between serum 25(OH) D levels and participants’ ethnicities and BMI ranges. Anti-HBsAb titer was significantly higher in participants with sufficient vitamin D levels compared to those with insufficient and deficient levels (1835 ± 252.55 vs. 1129 ± 120.7 and 1363 ± 0.125 ng/ml). Serum anti-HBsAb levels post HBV vaccination were significantly higher in women and younger individuals than in men and older individuals, respectively.

Conclusion: This study findings suggest that participants with different serum vitamin D levels produce seroprotective antibody titers post HBV vaccination, while those with sufficient vitamin D levels may produce higher titers against HBV vaccine.

Keywords: Hepatitis B surface antigen, Hepatitis B, Hepatitis B Vaccines, Vitamin D.

CITATION LINKS

Introduction

Hepatitis B is one of the most common viral diseases in humans, and one million people die every year due to its complications [1]. The main causes of death from this disease are liver cirrhosis and liver cancer, which are the final clinical outcomes of hepatitis [2]. Due to the severe complications as well as the difficult and expensive treatment of hepatitis B, the most important way to control and avoid hepatitis B infection is prevention through the administration of a vaccine containing hepatitis B surface antigen (HBsAg), obtained by recombinant DNA technology [3]. Since 1993, the national vaccination program against hepatitis B has been implemented for newborns in Iran [4]. At present, the vaccine is given to infants at the ages of zero, two, and six months and to high-risk groups at the ages of zero, one, and six months in health centers [4, 5]. The protective threshold of antibody response to hepatitis B virus (HBV) vaccine has been established by clinical studies as an antibody titer of 10 international units (IU) or higher [6]. Although previous studies have indicated that HBV vaccine is highly effective against hepatitis B infection, it is far from perfect in some vaccinated individuals [7]. Several studies have shown that 1-10% of healthy individuals are unable to produce protective antibodies after the end of the vaccination period, these people are considered as non-responders to HBV vaccine [6]. On the other hand, studies on different population groups at different ages have shown that the duration of protective immune responses induced by HBV vaccine varies from 5 to 10 years [5, 6]. In a systematic review and meta-analysis, Tazhibi et al. (2014) demonstrated that the prevalence of non-responders to HBV vaccine among Iranian adult population was approximately 14% [8].

Individual genetics, especially certain haplotypes of HLA, old age, sex, obesity, high smoking, immunodeficiency, low or very high dose of antigen in the vaccine, and inappropriate location and method of injection have been introduced as factors influencing protective immune responses induced by HBV vaccine [9]. Although several investigations have been conducted during the past 20 years, the impact of immunogenic factors on both the efficacy of HBV vaccine and the duration of post-vaccination immunity is not completely understood [9]. Moreover, during the last two decades, several studies have been carried out to increase the immunogenicity of HBV vaccine, especially in non-responders, to increase the duration of protective immune responses induced by HBV vaccine and to reduce the dosage and frequency of booster injections [9, 10]. Furthermore, in recent years, the use of adjuvants has been suggested as a strategy to improve immune responses to viral vaccines such as HBV vaccine in the elderly population and people with comorbidities [11]. Notably, alterations in the host’s nutritional status and nutritional interventions are among the potential strategies to enhance immune responses to vaccination [12-14]. Vitamin D is one of the micronutrients whose impacts on immune responses to different viral infections and vaccines have been widely evaluated [15-17].

Moreover, various research studies have extensively demonstrated that vitamin D possesses anti-infective, anti-inflammatory, and immunomodulatory attributes, and its sufficient serum levels play a vital role in promoting the optimal performance of the immune system [18]. In a study conducted by Farnik et al. (2013), patients suffering from chronic hepatitis B and low serum levels of vitamin D exhibited increased replication of hepatitis B virus [19]. Also, in another study by Zitt et al. (2012), the results indicated that vitamin D deficiency in patients with chronic kidney
Infection Epidemiology and Microbiology

Disease was associated with poor antibody responses to HBV vaccine [20]. In their research, Mahamid et al. (2013) revealed a significant association between serum levels of vitamin D and spontaneous occurrence of hepatitis B surface antigen seroclearance [21]. Although few studies have investigated the effect of serum levels of vitamin D on immune responses to HBV in healthy adult populations, some studies have evaluated the association between serum levels of vitamin D and hepatitis B virus replication, severity of hepatitis B infection, disease progression, and response to treatment [19-22]. According to Sadarangani and colleagues (2015), the importance and effect of vitamin D on immune responses to HBV vaccine should be studied not only in populations with high incidence of vitamin D deficiency such as hemodialysis patients but also in other healthy populations [15]. Previous research has suggested that serum vitamin D levels may serve as a primary indicator of the body’s response to HBV vaccine [17]. Habibesadat et al. (2014) reported a high prevalence of vitamin D deficiency and insufficiency in North Khorasan province, Iran [23]. However, the relationship between serum vitamin D levels and immune responses to HBV vaccine has not yet been fully elucidated.

Objectives: The present study aimed to investigate the effect of serum levels of vitamin D on immune responses to HBV vaccine in healthy adult population in Mane and Samalghan city in North Khorasan, Iran.

Materials and Methods

Subjects: This descriptive cross-sectional study was conducted on 134 healthy individuals aged 18 to 35 years, who referred to health centers for HBV vaccination in Mane and Samalghan city in North Khorasan, Iran from June to September 2021. Exclusion criteria included: taking vitamin D supplemements and immunosuppressive drugs within six months prior to the study, history of hepatitis B infection, BMI (body mass index) lower than 16 and upper than 40, having underlying diseases such as hyperparathyroidism, chronic kidney diseases, liver diseases, diabetes, autoimmune disease, etc. The participants were selected completely voluntarily based on the cluster sampling method. Demographic data (age, race, ethnicity, gender, BMI, etc.) of the participants were collected through a questionnaire.

Vaccination, blood collection, and measurement and assessment of serum 25(OH) D levels: Peripheral venous blood samples were collected from all the participants. Following blood collection, sera were isolated from the blood samples via centrifugation at 2000×g and stored at −80°C for subsequent analysis. The participants were administered with three doses of HBV vaccine: the initial dose at the time of blood sampling and subsequent doses one and six months later.

Then serum levels of 25(OH) D were measured using commercial sandwich ELISA (enzyme-linked immunosorbent assay) kits (Padtangostar, Iran). The intra-assay and inter-assay precision of the ELISA kit for 25(OH) D was less than 10 and 12%, respectively. According to previous studies [16, 23, 24], 30 and 20 ng/mL were considered as the thresholds of vitamin D insufficiency and deficiency, respectively. Accordingly, the participants with sufficient (30-100 ng/mL), insufficient (20-29 ng/mL), and deficient (> 20 ng/mL) serum 25(OH) D levels were evaluated in terms of anti-hepatitis B surface antibody (anti-HBsAb) titer.

Blood collection and measurement of anti-HBsAb titer: Blood samples were collected from the participants four to six weeks after the third dose of HBV vaccine. Anti-hepatitis B surface antibody (anti-HBsAb) titer was determined by analyzing isolated serum samples using the

Infection Epidemiology and Microbiology

Spring 2023, Volume 9, Issue 2
sandwich ELISA method (Padtangostar, Iran). The participants were subsequently classified into three groups based on their serum anti-HBsAb levels: (i) non-responders or sero-negatives (< 10 IU/L), (ii) low responders (10-100 IU/L), and (iii) good responders (> 100 IU/L) [10]. The ELISA kit demonstrated intra-assay and inter-assay precision of 4.9 and 5.1% for the mean HBsAb titers, respectively.

Statistical analysis: GraphPad Prism software Version 5.0 (GraphPad software, USA) was used for statistical analysis of data. Data distribution was analyzed by Kolmogorov–Smirnov test. According to the normality test results, comparisons between groups were performed using one-way ANOVA for parametric variables and Mann-Whitney U test for nonparametric variables. Chi-square test was used to examine the relationship between independent and dependent variables. Data were shown as mean ± standard deviation (SD), and p values less than 0.05 were considered as statistically significant.

Findings

Characteristics of sample: In this study, informed consent was obtained from a total of 134 participants. Also, 65.7% (n=88) of the participants were male, and 34.3% (n=34) were female. The average age of the study participants was 21.33 ± 2.34 years. The results showed that most of the study participants had insufficient (34.3%) and deficient (46.3%) serum 25 (OH) D levels. Table 1 summarizes the demographic characteristics of the study participants. The results indicated that the level of 25 (OH) D was higher in women than in men (23.30 ± 1.81 and 20.85 ± 0.88, respectively); however, this difference was not statistically significant (p = .17). There was also no statistically significant association between serum levels of 25(OH) D and participants’ various ethnicities and BMI ranges (p< .05).

Anti-hepatitis B surface antibody titer in participants with different serum vitamin D levels: The mean anti-HBsAb titer in the participants before vaccination and 4-6 weeks post vaccination was 3.74 ± 0.29 and 1340.44 ± 85.11 ng/mL, respectively. Of 134 individuals vaccinated with HBV vaccine, 130 (97%) were good responders (> 100 IU/L), whereas 2 (1.5%) were low responders (10-100 IU/L), and 2 (1.5%) were non-responders (< 10 IU/L).

This study results showed that the mean anti-HBsAb titer post HBV vaccination was significantly higher in women than in men (p = .004, Table 2). It was also evident that the mean anti-HBsAb titer post HBV vaccination was significantly higher in participants aged <21 years (p = .007) than in individuals aged ≥21 years. Table 2 compares the mean anti-HBsAb titer in individuals with different age, gender, and serum 25(OH) levels. The comparative analysis results indicated that the difference in anti-HBsAb titer between participants with sufficient, insufficient, and deficient serum 25(OH) D levels was significant (p = .018). The mean anti-HBsAb titers in participants with sufficient, insufficient, and deficient serum 25(OH) D levels were 1835 ± 252.55, 1129 ± 120.7, and 1363 ± 0.125 ng/mL, respectively (Figure 1).

Discussion
Table 1) Demographic characteristics of the study participants and their classification based on serum total 25(OH)D levels.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N=134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>21.33 ± 2.34</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88 (65.7)</td>
</tr>
<tr>
<td>Female</td>
<td>46 (34.3)</td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>129 (96.3)</td>
</tr>
<tr>
<td>Married</td>
<td>5 (3.7)</td>
</tr>
<tr>
<td>Education levels, n (%)</td>
<td></td>
</tr>
<tr>
<td>Low (elementary school)</td>
<td>24 (17.9)</td>
</tr>
<tr>
<td>Middle (high school)</td>
<td>43 (32.1)</td>
</tr>
<tr>
<td>High (college or university)</td>
<td>67 (50)</td>
</tr>
<tr>
<td>BMI</td>
<td>22.63 ± 2.96</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Persians</td>
<td>89 (66.4)</td>
</tr>
<tr>
<td>Khorasani Turks</td>
<td>15 (11.2)</td>
</tr>
<tr>
<td>Khorasani Kurds</td>
<td>14 (10.4)</td>
</tr>
<tr>
<td>Turkomen</td>
<td>11 (8.2)</td>
</tr>
<tr>
<td>Other (Tats, Arabs, Baloch)</td>
<td>5 (3.7)</td>
</tr>
<tr>
<td>Serum total 25(OH)D (ng/L)</td>
<td>21.70 ± 9.93</td>
</tr>
<tr>
<td>Adequate (30-100 ng/mL)</td>
<td>26 (19.40)</td>
</tr>
<tr>
<td>Insufficient (20-29 ng/mL)</td>
<td>46 (34.32)</td>
</tr>
<tr>
<td>Deficient (> 20 ng/mL)</td>
<td>62 (46.26)</td>
</tr>
</tbody>
</table>

*BMI: Body Mass Index

Table 2) Comparison of the mean anti-HBsAb titer in individuals with different age, gender, and serum levels of 25(OH). It was noticed that males displaying Insufficient 25(OH) levels or a deficiency of 25(OH) tend to have significantly higher anti-HBsAb titer compared to females with corresponding 25(OH) levels. Furthermore, individuals under the age of 21 years with deficiency of 25(OH) had significantly higher serum levels of anti-HBsAb titer compared to those aged ≥21 years.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gender</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Sufficient</td>
<td>Mean ± SD</td>
<td>2105 ± 520.0</td>
</tr>
<tr>
<td>Insufficient</td>
<td>Mean ± SD</td>
<td>856.2 ± 140.3</td>
</tr>
<tr>
<td>Deficient</td>
<td>Mean ± SD</td>
<td>1135 ± 170.7</td>
</tr>
</tbody>
</table>

*P values less than 0.05 are significant.
Impact of Serum 25(OH) D Levels on Immune Responses to Infection

Since the introduction and approval of the recombinant HBV vaccine by the FDA (Food and Drug Administration) in 1986, there have been arguments about the factors that could affect human immune responses to this vaccine [25]. Vitamin D is one of the factors suspected to be effective in improving immune responses to HBV vaccine. In this research, the influence of serum concentration of 25-(OH) D at the time of HBV vaccination on anti-HBsAb titer 4-6 weeks post vaccination was investigated in healthy adults.

The results showed that the prevalence of vitamin D deficiency and insufficiency among the participants was 46.3 and 34.3%, respectively. This finding indicates that most of the participants had insufficient and deficient levels of vitamin D, which is a concern, given that previous research has suggested that low vitamin D levels may be associated with an increased risk of developing infectious diseases [26]. However, this finding is consistent with previous research results suggesting that vitamin D insufficiency or deficiency is a common problem, particularly among younger populations [27]. Shakeri et al. (2017) and Moradzadeh et al. (2006) have also reported similar results [24, 28].

The results showed no significant difference between men and women in the serum level of 25(OH) D, which in inconsistent with the results of another study by Shakeri et al. (2017), indicating a higher prevalence of vitamin D deficiency and insufficiency in women [23, 24]. This difference may be due to differences in participants’ age and geographical regions studied.

There are different reports on the percentage of vaccinated individuals who may develop effective immune responses following complete HBV vaccination. Studies conducted in Iran and other parts of the world have reported that 90-95% of people vaccinated against hepatitis B virus successfully respond to vaccination [7, 8], which is consistent with the present study results indicating 97% effective response to HBV vaccine. In this study, only a small proportion of vaccinated individuals did not respond to HBV vaccine and were classified as low or non-responders. Various factors including age, obesity, smoking, immune status, and genetic factors are involved in not responding to the standard dose of hepatitis B virus vaccine [9]. Among these factors, genetic factors play an important role in not responding to HBV vaccine. For example, certain human leukocyte antigen (HLA) gene polymorphisms are associated with poor vaccine response [29].

Interestingly, it was found that individuals with different serum 25(OH) D levels produced different anti-HBsAbs titers following vaccination. In other words, anti-HBsAb titer was significantly higher in individuals with sufficient 25 (OH) D levels than in individuals with insufficient or deficient 25 (OH) D levels (Figure 1). In line with the present study results, Kashi et al. (2021) conducted a study on 447 healthy adults and proved that low vitamin D level at the time of initial vaccination was associated with a poorer response to HBV vaccine [30]. Additionally, Jafarzadeh et al. (2017) conducted a study to evaluate the relationship between vitamin D status and persistence of anti-HBsAb and immune response to booster immunization 20 years after receiving the primary HBV vaccination. Their study findings suggested that individuals who maintained seroprotective levels of anti-HBsAb (≥10 IU/L) exhibited elevated concentrations of vitamin D. Furthermore, individuals who exhibited an anamnestic response to booster vaccination revealed considerably greater concentrations of vitamin D than those who did not display such a response [31]. In addition to conducting
several studies on healthy subjects, Zitt et al. (2012) demonstrated that in patients with chronic kidney disease, vitamin D deficiency was associated with poor antibody response to HBV vaccine [20]. However, Viard et al. (2016) claimed that there was no significant association between 25(OH) D levels and immune responses elicited against HBV vaccine [32], which is different from the current study results. This inconsistency may be explained by the fact that they conducted their study on HIV patients but not on healthy populations.

It was also found that serum levels of anti-HBsAb post HBV vaccination were significantly higher in women and individuals under 21 years of age than in men and individuals over 21 years of age, respectively (Table 2). In line with the present study results, previous studies have demonstrated that women have higher anti-HBsAb titers than men, and anti-HBsAb titers decrease with age [33, 34].

Conclusion

Taken together, these results suggest that healthy individuals with different serum vitamin D levels produce seroprotective antibody titers post HBV vaccination, while subjects with sufficient vitamin D levels may produce higher titers against HBV vaccine. These findings may be partially influenced by the age range of the study participants, the season and geographical area studied, the small sample size, and the method used to measure 25 (OH) D levels.

An in-depth analysis of the correlation between vitamin D status and permanence of anti-HBsAb titer, as well as the relationship between anti-HBsAb titer following HBV vaccination and vitamin D-binding protein concentration and vitamin D receptor gene polymorphism, may promote a comprehensive comprehension of the effects of serum vitamin D status on immune responses to HBV vaccine in healthy adult populations.

Acknowledgments

All author(s) would like to thank the members of the Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran for their technical assistance. All author(s) are grateful to the staff of the health centers of Mane and Samalghan city in North Khorasan, Iran for their assistance in conducting this research project.

Ethical permissions: The study was approved by the Ethics Committee of North Khorasan University of Medical Sciences, Bojnourd, Iran (Ethic approval Code: IR.NKUMS.REC.1397.065).

Authors’ contributions: M.R conceived the study, M.R and H.N.A designed the study, Z.A and S.K completed the questionnaire, S.M.J and H.N performed the experiments, M.R.S and Z.A performed statistical analyses, M.R, H.N.A, and S.M.J prepared the manuscript, and S.M.J and M.R.S edited the manuscript. All authors read and approved the final manuscript.

Conflict of interests: All author(s) declare that they have no conflict of interests. The author(s) have no affiliation with any organization with direct or indirect financial interest in the subject matter discussed in the manuscript.

Fundings: This study was funded by North Khorasan University of Medical Sciences (Grant no. 970116).

Consent to participate: This study included human participants. Therefore, written informed consents were obtained from all participants.

References

3. Degli Esposti S, Shah D. Hepatitis B in pregnancy:

