Volume 11, Issue 2 (2025)                   IEM 2025, 11(2): 167-178 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khani L, Nikfar N, Zakeri S, Rahmati M, Javdan S, Ganjalikhany M R, et al . HLA Class I Genotypes and Their Role in COVID-19 Severity: A Study in the Isfahan Province. IEM 2025; 11 (2) :167-178
URL: http://iem.modares.ac.ir/article-4-77747-en.html
1- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Science, Lodz, Poland. Bio-Med-Chem Doctoral School of the University of Lodz, Lodz, Institutes of the Polish Academy of Sciences, Lodz, Poland
2- Department of molecular medicine, University of Pavia, Italy
3- Molecular department of Isfahan Nobel pathology and genetics laboratory, Isfahan, Iran
4- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
5- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
6- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
7- Infectious Disease and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
8- Department of Biomedical Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey
9- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey , mghakemi@med.mui.ac.ir
Abstract:   (555 Views)
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a significant global health threat. The host immune response determines the disease severity, with factors like human leukocyte antigen (HLA) genes, age, sex, and nutritional status influencing outcomes. HLA genes, known for their genetic diversity, are implicated in determining susceptibility and severity of infectious diseases. This study investigated the association between HLA class I genotypes and COVID-19 severity in the Isfahan population, Iran.
Materials & Methods: Blood samples were collected from 34 COVID-19 patients with varying levels of disease severity (severe, moderate, and mild). HLA genotyping was performed using polymerase chain reaction-sequence specific primers (PCR-SSP), and in silico analysis assessed the affinity of viral peptides to HLA alleles.
Findings: Statistical analyses revealed that HLA-C07 was more prevalent in patients with severe COVID-19, suggesting a potential association between this allele and the disease severity. Furthermore, HLA-A01 was more prevalent among severe cases, while HLA-A02 and HLA-A03 were less frequent, indicating a possible predisposing role for HLA-A01 and protective roles for HLA-A02 and HLA-A*03.
Conclusion: These findings highlight the role of HLA molecules in COVID-19 severity and offer insights into genetic factors influencing outcomes. Understanding the association of specific HLA alleles, such as HLA-C07, HLA-A01, HLA-A02, and HLA-A03, with the disease progression lays a foundation for advancing personalized preventive and therapeutic approaches. These results contribute to knowledge on host genetics in infectious diseases, paving the way for further research and therapeutic strategies.
Full-Text [PDF 597 kb]   (41 Downloads)    
Article Type: Original Research | Subject: Virology
Received: 2024/10/30 | Accepted: 2025/03/8 | Published: 2025/04/21

References
1. Russo FP, Burra P, Zanetto A. COVID-19 and liver disease: Where are we now? Nat Rev Gastroenterol Hepatol. 2022;19(5):277-8. [DOI:10.1038/s41575-022-00607-9] [PMID] []
2. Bedford J, Enria D, Giesecke J, Heymann DL, Ihekweazu C, Kobinger G, et al. COVID-19: Towards controlling of a pandemic. Lancet. 2020;395(10229):1015-8. [DOI:10.1016/S0140-6736(20)30673-5] [PMID]
3. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. [DOI:10.1016/j.jpha.2020.03.001] [PMID] []
4. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424-32. [DOI:10.1002/jmv.25685] [PMID] []
5. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36-49. [DOI:10.1038/nri3581] [PMID] []
6. Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: Expression, interaction, diversity, and disease. J Hum Genet. 2009;54(1):15-39. [DOI:10.1038/jhg.2008.5] [PMID]
7. Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules. Science. 1996;272(5258):67-74. [DOI:10.1126/science.272.5258.67] [PMID]
8. Hudson LE, Allen RL. Leukocyte Ig-like receptors-a model for MHC class I disease associations. Front Immunol. 2016;7:281. [DOI:10.3389/fimmu.2016.00281]
9. Huy NT, Hamada M, Kikuchi M, Lan NTP, Yasunami M, Zamora J, et al. Association of HLA and post-schistosomal hepatic disorder: A systematic review and meta-analysis. Parasitol Int. 2011;60(4):347-56. [DOI:10.1016/j.parint.2011.05.008] [PMID]
10. Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009;22(2):370-85. [DOI:10.1128/CMR.00048-08] [PMID] []
11. Sanchez-Mazas A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med Wkly. 2020;150(1516):w20214. [DOI:10.4414/smw.2020.20214]
12. Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;4:1-7. [DOI:10.1186/1471-2350-4-9] [PMID] []
13. Yuan FF, Velickovic Z, Ashton LJ, Dyer WB, Geczy AF, Dunckley H, et al. Influence of HLA gene polymorphisms on susceptibility and outcome post infection with the SARS-CoV virus. Virol Sin. 2014;29(2):128-30. [DOI:10.1007/s12250-014-3398-x] [PMID] []
14. Nejentsev S, Howson JM, Walker NM, Szeszko J, Field SF, Stevens HE, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450(7171):887-92. [DOI:10.1038/nature06406] [PMID] []
15. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004;432(7018):769-75. [DOI:10.1038/nature03113] [PMID]
16. Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet. 2009;41(5):591-5. [DOI:10.1038/ng.348] [PMID]
17. Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, Kristinsson KG, Gottfredsson M, Barrett JC, et al. HLA class II sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet. 2016;48(3):318-22. [DOI:10.1038/ng.3498] [PMID] []
18. Linhares I, Raposo T, Rodrigues A, Almeida A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: A ten-year surveillance study (2000-2009). BMC Infect Dis. 2013;13:1-14. [DOI:10.1186/1471-2334-13-19] [PMID] []
19. Sakhno LV, Shevela EY, Tikhonova MA, Nikonov SD, Ostanin AA, Chernykh ER. Impairments of antigen‐presenting cells in pulmonary tuberculosis. J Immunol Res. 2015;2015(1):793292. [DOI:10.1155/2015/793292] [PMID] []
20. Sauer ME, Salomão H, Ramos GB, DEspindula HR, Rodrigues RS, Macedo WC, et al. Genetics of leprosy: Expected and unexpected developments and perspectives. Clin Dermatol. 2015;33(1):99-107. [DOI:10.1016/j.clindermatol.2014.10.001]
21. Huang J, Goedert JJ, Sundberg EJ, Cung TD, Burke PS, Martin MP, et al. HLA-B* 35-Px-mediated acceleration of HIV-1 infection by increased inhibitory immunoregulatory impulses. J Exp Med. 2009;206(13):2959-66. [DOI:10.1084/jem.20091386] [PMID] []
22. Augusto DG, Murdolo LD, Chatzileontiadou DSM, Sabatino JJ Jr, Yusufali T, Peyser ND, et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature. 2023 Aug;620(7972):128-136. doi: 10.1038/s41586-023-06331-x. [DOI:10.1038/s41586-023-06331-x] []
23. Ng MH, Lau KM, Li L, Cheng SH, Chan WY, Hui PK, et al. Association of human-leukocyte-antigen class I (B* 0703) and class II (DRB1* 0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis. 2004;190(3):515-8. [DOI:10.1086/421523] [PMID] []
24. Chen YM, Liang SY, Shih YP, Chen CY, Lee YM, Chang L, et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J Clin Microbiol. 2006;44(2):359-65. [DOI:10.1128/JCM.44.2.359-365.2006] [PMID] []
25. Wang SF, Chen KH, Chen M, Li WY, Chen YJ, Tsao CH, et al. Human-leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunol. 2011;24(5):421-6. [DOI:10.1089/vim.2011.0024] [PMID]
26. Shkurnikov M, Nersisyan S, Jankevic T, Galatenko A, Gordeev I, Vechorko V, et al. Association of HLA class I genotypes with severity of coronavirus disease-19. Front Immunol. 2021;12:641900. [DOI:10.3389/fimmu.2021.641900] [PMID] []
27. Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004;78(11):5535-45. [DOI:10.1128/JVI.78.11.5535-5545.2004] []
28. Wang W, Zhang W, Zhang J, He J, Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease‐2019 (COVID‐19). Hla. 2020;96(2):194-6. [DOI:10.1111/tan.13941] []
29. Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide association study of severe COVID-19 with respiratory failure. N Engl J Med. 2020;383(16):1522-34. [DOI:10.1056/NEJMoa2020283] [PMID] []
30. Farahani RH, Esmaeilzadeh E, Asl AN, Heidari MF, Hazrati E. Frequency of HLA alleles in a group of severe COVID-19 Iranian patients. Iran J Public Health. 2021;50(9):1882-6.
31. Coles CH, McMurran C, Lloyd A, et al. T cell receptor interactions with human leukocyte antigen govern indirect peptide selectivity for the cancer testis antigen MAGE-A4. J Biol Chem. 2020;295(33):11486-11494. doi:10.1074/jbc.RA120.014016. [DOI:10.1074/jbc.RA120.014016] []
32. Toyoshima Y, Nemoto K, Matsumoto S, Nakamura Y, Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J Hum Genet. 2020;65(12):1075-82. [DOI:10.1038/s10038-020-0808-9] []
33. Correale P, Mutti L, Pentimalli F, Baglio G, Saladino RE, Sileri P, et al. HLA-B*44 and C*01 prevalence correlates with COVID-19 spreading across Italy. Int J Mol Sci. 2020;21(15):5205. [DOI:10.3390/ijms21155205] [PMID] []
34. Yokoyama WM. Natural killer cell immune responses. Immunol Res. 2005;32(1-3):317-25. [DOI:10.1385/IR:32:1-3:317]
35. Pareek M, Bangash MN, Pareek N, Pan D, Sze S, Minhas JS, et al. Ethnicity and COVID-19: An urgent public health research priority. Lancet. 2020;395(10234):1421-2. [DOI:10.1016/S0140-6736(20)30922-3]
36. Novelli A, Andreani M, Biancolella M, Liberatoscioli L, Passarelli C, Colona VL, et al. HLA allele frequencies and susceptibility to COVID‐19 in a group of 99 Italian patients. Hla. 2020;96(5):610-4. [DOI:10.1111/tan.14047] [PMID] []
37. Tomita Y, Ikeda T, Sato R, Sakagami T. Association between HLA gene polymorphisms and mortality of COVID-19: An in-silico analysis. Immun Inflamm Dis. 2020;8(4):684-94. [DOI:10.1002/iid3.358] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.