The prevalence of icaADBC Genes among Clindamycin Inducible Resistant Staphylococcus aureus Isolates

Authors
Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Background: Clindamycin inducible resistant Staphylococcus aureus (S.aureus) isolates can cause failure in treatment with this antibiotic. Biofilm production via polysaccharide intercellular adhesion (PIA) contributes in the colonization of S. aureus, resulting in the initiation of different diseases. The aim of this study was to detect icaADBC genes among isolates of S.aureus with inducible resistance to clindamycin. Materials and Methods: A total of 209 clinical S.aureus isolates werecollected and identified by conventional phenotypic tests. Isolates with inducible resistance to clindamycin were detected by double disk diffusion test (D-Test) using clindamycin (2 μg) and erythromycin (15 μg). Oxacillin was used to detect Methicillin resistant Staphylococcus aureus (MRSA) isolates. Polymerase Chain Reaction (PCR) was performed to detect the icaADBC genes. Results: The rate of clindamycin inducible resistance was 4% (n=8). All the isolates were susceptible to methicillin. Four isolates (50%) contained the whole icaADBC genes. The prevalence of icaA, icaB, icaC and icaD genes were 5 (62.5%), 4 (50%), 6 (75%) and 5 (62.5%), respectively. Conclusion: The results indicate that the prevalence of icaADBC genes among clindamycin inducible resistant strains was low, and also these strains were susceptible to methicillin.

Keywords


  1. Tarek Z, Bochra K, Hanene M, Mahdouani K, Bakhrouf A. Amina B. A micro titer plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol. 2010; 33(2):137-45.

  2. Christopher W, Christiane G, Christiane W. Staphylococcus aureus determinants for nasal colonization. Trends in Microbiol. 2012; 20(5):243-50.

  3. Ajao AO, Harris AD, Roghmann MC, Johnson JK, Zhan M, Mc Gregor JC. Systematic review of measurement and adjustment for colonization pressure in studies of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and clostridium difficile acquisition. Infect Control Hosp Epidemiol. 2011; 32(5):481-9

  4. Dardi CK, Khare AS. Inducible clindamycin resistance in Staphylococcus aureus in a tertiary care rural hospital. Indian J Basic Appl Med Res. 2013; 7(2):686-93.

  5. Mohammad A. Incidence of macrolide-lincosamide-streptogramin-B resistance phenotypes of methicillin resistance Staphylococcus aureus and methicillin sensitive Staphylococcus aureus among animals in Saudi Arabia. Res J Microbiol. 2012; 7(5):256-62.

  6. James SL, James HJ. Inducible clindamycin resistance in staphylococci. Should clinicians and microbiologists be concerned? Antimicrob resist. 2005; 40(2):280-5.

  7. Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Macrolide-lincosamide-streptogramin B resistance phenotypes in clinical Staphylococcal isolates. Int J Antimicrob Agents. 2008; 31(4):364-8.

  8. Gerke C, Kraft A, Süssmuth R, Schweitzer O, Götz F. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesion. J Biol Chem. 1998; 273(29):18586-93.

  9. Liberto MC, Matera G, Quirino A, Lamberti AG, Capicotto R, Puccio R, et al. Phenotypic and genotypic evaluation of slime production by conventional and molecular microbiological techniques. Microbiol Res. 2009;164(5):522-8.

  10. Akiyama H. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in skin lesions of bullous impetigo, atopic dermatitis and pemphigus foliaceus. Br J Dermatol. 2003; 148(3):526-32

  11. Eftekhar F, Dadaei T. Biofilm formation and detection of icaAB genes in clinical isolates of methicillin resistant Staphylococcus aureus. Iran J Basic Med Sci. 2011; 14(2):132-6.

  12. Zhang K, Sparling, J, Chow B, Elsayed SHussain ZChurch DL, et al. New quadriplex PCR assay for detection of methicillin and muropicin resistance and simultaneous discrimination of Staphylococcus aureus from Coagulase-negative staphylococci. J Clin Microbiol. 2004; 42(11): 4947-55.

  13. Gey A, Werckenthin C, Poppert S, Straubinger RK. Identification of pathogens in mastitis milk samples with fluorescence in situ hybridization. J Vet Diagn Invest. 2013; 25(3):386-94.

  14. Faghri J, Shahbazzadeh D, Pooshang Bagheri K, Moghim S, Ghasemian Safaei H, Nasr Esfahani B, et al. Two Dimensional Structural Analysis and Expression of a New Staphylococcus aureus Adhesin Based Fusion Protein. Iran J Basic Med Sci. 2012; 15(2):725-38.

  15. Ghasemian A, Najar Peerayeh Sh, Bakhshi B, Mirzaee M. Accessory Gene Regulator Specificity Groups Among Staphylococcus aureus Isolated From Hospitalized Children. Arch Pediatr Infect Dis. 2014; 2(2):e16096.

  16. Atshan SS, Nor Shamsudin M, Leslie SZ, Lung TT, Karunanidhi A, Alreshidi MA, et al. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J Biomed Biotechnol. 2012; 2012:976972.

  17. Mirzaee M, Najar Peerayeh Sh, Ghasemian A.  Detection of icaABCD Genes and Biofilm Formation in Clinical Isolates of Methicillin Resistant Staphylococcus aureus. Iran J Pathol. 2014; 9(4):257-262.

  18. Nasra RA, AbuShadyb HM, Hussein SH. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. The Egypt J Med Hum Gen. 2012; 13(3):269-74.

  19. Szweda P, Schielmann M, Milewski S, Frankowska A, Jakubczak A. Biofilm Production and Presence of ica and bap genes in Staphylococcus aureus strains isolated from cows with mastitis in the eastern Poland. Polish J Microbiol. 2012; 61(1):65-9.

  20. Kara Terki I, Hassaine H, Oufrid S, Bellifa S, Mhamedi I, Lachachi M, et al. Detection of icaA and icaD genes and biofilm formation in Staphylococcus spp. isolated from urinary catheters at the University Hospital of Tlemcen (Algeria). Afr J Microbiol Res. 2013; 7(47):5350-7.