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The genus Pseudomonas consists of more than 120 species that are ubiquitous in moist environments such as water and soil ecosystems and
are pathogenic to animals and humans. Within the genus of Pseudomonas, P. aeruginosa is most frequently associated with human infections.
The bacterium is regarded as an opportunistic pathogen, primarily causing nosocomial infections in immunocompromised patients. The
existing knowledge regarding the pathogenesis of P. aeruginosa has mainly been obtained through studying clinical isolates; particularly
those involved in causing chronic lung infection in cystic fibrosis patients. Nosocomial infections commonly associated with P. aeruginosa
include ventilator-associated pneumonia, catheter-associated urinary tract infections, wound infections in severe burn patients and septicaemia
with their pathogenesis shown to be multifactorial. The bacterium is also capable of producing a number of toxins via the type Il secretion
system, as well as secreting enzymes and proteins including elastase, phospholipase C and siderophores. However, P. aeruginosa is also a
waterborne pathogen, commonly found in environmental waters as well as in other sources such as sewage treatment plants. The public health
implication of these bacteria whilst in the environment has not been fully investigated. Here we review our present knowledge about the

pathogenesis of P. aeruginosa in clinical settings and the environment.
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1. Background

Included in the category of genus Pseudomonas are
genus Pseudomonas which contains more than 120 species
that are all-over in moist environments such as water and
soil ecosystems and infective to plants, animals and
humans (1, 2). Pseudomonas species are easily detectable
on agar due to the production of pigments such as
pyoverdine which is a yellow-green, fluorescent pigment,
and pyocanin that is a blue-green pigment (3-6). Within the
Pseudomonas species, P. aeruginosa is most frequently
associated with causing human infection; however, it
naturally exists in the environment (7, 8). The bacterium is
regarded as an opportunistic pathogen, primarily causing
nosocomial infections in immunocompromised patients (9-
12). However, it is capable of causing a wide-spectrum of
infections when normal physiological function is disrupted,
including damaged epithelial barriers (13), depleted
neutrophil production (14), altered mucociliary clearance
(15) and the use of medical devices (16, 17). P. aeruginosa
is rarely associated with causing chronic infections in
previously healthy patients, although fatal cases of P.
aeruginosa infections in previously healthy people have
been reported (18, 19).

2. Context
2.1. P. aeruginosa causing respiratory tract infections

P. aeruginosa is well known for its ability to establish
permanent residency in the airways of cystic fibrosis (CF)
patients, resulting in the recurrence of chronic lung infect-
ions, progressive decline in lung function and increased mor-
bidity and mortality rates (20, 21). The mechanism by which
P. aeruginosa colonizes CF patients relies mainly on the
pathogenesis of this genetically inherited lung disease. The
disease is attributed to a gene mutation in cystic fibrosis
transmembrane conductance regulator (CFTR) protein; a chl-
oride channel which is involved in maintaining homeostasis

in epithelial tissues (15, 22, 23). Dysfunction of CFTR
channels disrupts the regulation of chloride ion transport
across the epithelia, resulting in sodium hyper absorption
and impaired mucociliary clearance (15, 22, 23). Thick
viscous mucus resides in the airways causing obstruction and
blockages, and mucus hypoxia promotes P. aeruginosa
colonization (24, 25). Non-CF patients are also susceptible
to respiratory tract colonization of P. aeruginosa, especially
patients with chronic obstructive pulmonary disease (COPD)
(26). COPD patients display similar symptoms to CF
patients such as decreased mucociliary clearance, and under
these predisposing conditions P. aeruginosa is able to
colonize and cause infection (15, 26).

P. aeruginosa is also a common causative agent of hospital-
acquired pneumonia (HAP), in immunocompromised individ-
uals (27). Colonization of the respiratory tract is initiated by the
contamination of medical equipment and/or cross-colonization
from other patients (27, 28). HAP is frequently acquired by
patients using mechanical ventilation, termed ventilator-
associated pneumonia (VAP) (29). P. aeruginosa is frequently
isolated from hospital medical equipment, due to the bact-
erium’s ability to survive in biofilms (16, 30). Previous studies
have associated VAP with prolonged use of ventilation and
prolonged duration in intensive care units (ICU) (29).

2.2. P. aeruginosa causing urinary tract infections

Urinary tract infections (UTI) caused by P. aeruginosa usually
occur secondary to catheterization, instrumentation or surgery.
Catheterization of the urinary tract is the major cause of nosocomial
acquired-UTI by P. aeruginosa (31). Catheters are utilized by
pathogens as a source of host entry, attaching to the catheter surface
in well-constructed biofilms (16, 17, 30). Furthermore, the insertion
of the catheter may also disrupt mucosal epithelial layers, promoting
bacterial colonization (31, 32).
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2.3. P. aeruginosa causing skin and soft tissue in-
fections

P. aeruginosa is the most commonly isolated bacterium
colonizing severe burns and wound infections (33-35). Wound
infections caused by multidrug resistant (MDR) P. aeruginosa
have been associated with high morbidity and mortality rates
worldwide (33, 35). Estahbanati and colleagues (2002) inve-
stigated P. aeruginosa isolated from burn wound infections in
a burn centre in Tehran and found that the majority of isolates
were MDR and less than half of the patients were discharged
from the centre (34). Nosocomial outbreaks of P. aeruginosa
have been reported in surgical wounds, causing post-operative
wound infections (36, 37). In addition, P. aeruginosa can
disseminate from the initial infection site and enter the
bloodstream, causing septicaemia (36). High mortality rates of
P. aeruginosa septicaemia have previously been reported (38,
39).

Mild skin infections can occur in previously healthy
people, associated with P. aeruginosa contamination in
swimming pools, hot tubs and other water sources (40-43).
Follicular dermatitis caused by P. aeruginosa has previously
been described as an itchy rash with a red base and white
pustules (44). In addition, nail diseases (e.g. onycholysis) are
susceptible to colonization of P. aeruginosa, and is commonly
referred as “green nail syndrome” (45-47). Paronychial infec-
tion has been associated with prolonged exposure to moist
environments (e.g. swimming). McNeil and colleagues (2001)
investigated an outbreak of P. aeruginosa infections in post-
surgical patients, reporting severe onycholysis and onycho-
mycosis in a nurses’ thumbnail as the primary source (47).

2.4. P. aeruginosa causing bacterial keratitis

P. aeruginosa is the leading cause of bacterial keratitis
(48), and occurs in patients with pre-existing ocular disease, in
post-ocular surgery patients and in individuals who use
contact lens. P. aeruginosa has been shown to adhere to the
disrupted corneal epithelial cells, and internalize rapidly (49,
50). Contact-lens associated keratitis is mediated by the
extended use of contact lens that has been shown to disrupt the
epithelial surface of the cornea, causing cornea abrasions (49-
51). Furthermore, bacterial keratitis initiated by contact lens
contamination has been associated with patient noncompliance
with appropriate contact lens care (52).

2.5. P. aeruginosa causing ‘swimmers ear’ infections

Otitis externa, commonly known as ‘swimmers ear’, is an
inflammation or infection of the external auditory canal, due
to prolonged exposure to moisture and/or the insertion of
foreign objects (e.g. cotton tips) (53, 54). It is well known that
P. aeruginosa is the most common pathogen of otitis externa,
strongly associated with swimming in contaminated
recreational pools (55).

2.6. Pathogenesis of P. aeruginosa

The pathogenesis of P. aeruginosa has been extensively
studied and proven to be a multifactorial process, mediated by
quorum sensing. P. aeruginosa possess two quorum sensing
systems, las and rhl that facilitate cell to cell communication
through production of signalling molecules termed autoin-
ducers to target specific receptors for activation (56-58).
However, a high population density is necessary for the
concentration of inducers to go beyond threshold. Maximal
receptor activation induces gene expression of several virul-
ence factors and biofilm formation (57-58). There are a num-
ber of virulence properties that help P. aeruginosa to colonize
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and evade the host’s immune system to cause infection,
including adhesions, the type Il secretion system and other
secreted proteins.

2.7. Adhesions

Adhesion of bacteria to the host cell surface is the first step
toward colonization and initiation of the disease (59). In P.
aeruginosa, adhesion is mediated by type IV pili and the form-
ation of biofilms (60-77). Type IV pili are the filamentous
appendages attached to the cell surface of the bacterium. More
than 40 genes involved in the biogenesis and function of type IV
pili have been previously identified (60). Hahn and colleagues
(61) have also shown that type IV pili accounted for 90% of the
adherence, function and virulence in a mouse infection model.
Type IV pili also assist in facilitating ‘twitching motility’; the
retraction and extension of pili, to facilitate bacterial movement
along the host cell surface (62-64). As a result, the surface
movement assists in the formation of microcolonies, which
develop into a mature biofilm (65-66).

P. aeruginosa also secretes extracellular polysaccharides;
alginate, polysaccharide-encoding locus (pel) and polysaccha-
ride synthesis locus (psl) that are also involved in forming the
biofilm matrix embedded around microcolonies (66-68).
Biofilms protect the bacterium from the host immune system
components, as well as resistance to antibiotics (69). Alginate
is commonly described as ‘slime’, that is commonly
associated with sputum cultures from CF patients, suggesting
that mucoid phenotypes of P. aeruginosa are important for
persistence and establishing permanent residency in the lungs
of CF patients (70). It has been previously shown that mucoid
phenotypes interfere with antibiotic effectiveness by
decreasing uptake (71). Alginate has also been shown to
inhibit phagocytosis and scavenge free radicals (72, 73).
However, non-mucoid phenotypes (alginate deficient) have
the ability to form biofilms, by utilizing pel and psl (74, 75). A
study by Ma et al. (76) has shown a decrease in binding to the
airway epithelial cells in psl-mutant strains, suggesting psl is
necessary for adhesion.

Previous studies have compared virulence and antibiotic-
resistance profiles of mucoid (alginate producing) and non-
mucoid (alginate deficient) biofilm phenotypes (74, 77). Mittal
et al. (77) correlated biofilm-producing P. aeruginosa with
increased renal tissue damage compared to non-mucoid
phenotypes of P. aeruginosa, suggesting that the biofilm
production contributes to the pathogenicity and host damage
in P. aeruginosa urinary tract infections. In contrast, Wozniak
et al. (74) studied antibiotic resistance profiles in wild-type
and alginate-mutant biofilms and reported no differences in
the antibiotic resistance.

In addition to type 1V pili and biofilm formation, adhesion
is also mediated by other various cell surface features,
including lipopolysaccharides (LPS). LPS is a large molecule
found on the outer surface membrane in most Gram-negative
bacteria (78). The LPS structure is heterogeneous in its lipid A
and O-antigen structure, presenting in two glycoforms in P.
aeruginosa (78). LPS serve as recognition molecules to the
innate immune system, responsible of causing bacterial
infection-induced inflammation (78, 79). The induced infla-
mematory response is variable, associated with the level of
acylation in lipid A, whereby a fully hexa-acylated lipid A is
necessary for a vigorous response (80). LPS signal
transduction is a complex process mediated by binding LPS to
lipopolysaccharide-binding protein (LPB) to form LPS-LBP
complexes, thatare transferred to CD14 receptors, for seco-
ndary activation of toll-like receptor-4 (79, 80). Previous find-
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ings have shown that initial isolation of P. aeruginosa from
CF patients contain O-antigen, however upon establishment of
chronic infection, the same strain of P. Aeruginosa was found
to be LPS O-antigen-deficient (81, 82).

2.8. Type Il secretion system

P. aeruginosa interacts with the host via a protein, needle-
like appendage known as the type Il secretion system (T3SS).
The T3SS injects toxic effector proteins into the cytosol of
eukaryotic cells to inhibit cellular function for bacterial
survival. Four effector toxins have been identified in P.
aeruginosa and include exoenzymes S, T, U, and Y. ExoS and
ExoT are bifunctional, possessing GTPase activating protein
(GAP) activity and ADP-ribosyltransferase activity (84, 85),
while ExoY is an adenylate cyclase (86). Previous studies
have shown that ExoS, ExoT and ExoY function to acquire
cytolytic activity, inhibiting epithelial cell invasion and
preventing phagocytosis (86-88). Furthermore, these proteins
are associated with disruption of endothelial cell junctions, via
cell retraction and rounding to alter the cytoskeleton (86-88).

However, ExoU is a potent cytotoxin with phospholipase Az
(PLA?) activity; the ability to cleave phospholipid membranes to
cause cell lysis (89, 90). ExoU has also been shown to acquire
cytolytic activity to various cell types including epithelial cells,
macrophages and fibroblasts (83, 89, 90). In addition, the PLA2
activity initiates inflammation due to the production of
arachidonic acid for cyclooxygenase and lipoxygenase pathways,
resulting in prostaglandins production (91).

Feltman and colleagues (92) have previously reported that
P. aeruginosa isolates possess either exoS or exoU genes, not
both. On the other hand, previous studies by Wolfgang et
al(93) have shown that this feature did not exist among
clinical strains, concluding that all clinical isolates carried
both exoS and exoU genes. A high prevalence of ExoS
production has been documented in P. aeruginosa isolates
from urinary tract and wound infections (92, 94). Conversely,
ExoU has reported to be highly associated in Pseudomonal
lung infections, including hospital-acquired pneumonia (85,
95). In fact, it has been shown that a significant reduction in
lung pathology and virulence is associated with ExoU deletion
in mutated isolates (96). Consistently, ExoU production in
animal models and in patients has been strongly associated
with the acceleration of lung injury (89, 97-99). In contrast,
Dacheux and colleagues (99) associated CF isolates with a low
prevalence of ExoU (i.e. 10%), which is similar to the study
by Feltman and colleagues (92), who found that ExoU in only
found in 8% of CF isolates. This suggests that virulence
properties of P. aeruginosa causing lung infections i.e.
pneumonia are dissimilar to lung infections associated with
CF patients. Previous studies have suggested that ExoT is a
non-variable virulence property, which is prevalent in all
clinical isolates of P. aeruginosa (92, 100). In addition,
Feltman and colleagues (92) also reported ExoY to be present
in most clinical isolates of P. aeruginosa, supporting a similar
finding by Dacheux and colleagues (99).

2.9. Other secreted virulence properties of P. aeruginosa
P. aeruginosa secretes a haemolytic and a non-haemolytic
phospholipase C (PLC). Studies have shown that non-
hameolytic PLC has no pathogenic activity, whereas
haemolytic PLC degrades phosphatidylcholine and sphin-
gomyelin that are commonly found within eukaryotic memb-
ranes and host lung surfactant, principally to cause lung injury
(101, 102). Additionally, Meyers et al (102) also reported that
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inactive forms of PLC were unable to cause an inflammatory
effect. In addition, P. aeruginosa secretes elastase (LasB); a
metalloproteinase involved in the host colonization and tissue
damage (103). Previous studies have suggested LasB as an
important virulence factor for bacterial survival from the host
immune system, through degradation elastin and collagen
(103), immune components including cytokines, chemokines,
IL-2 and IL-8 and inactivation of immunoglobulin A and G
(104, 105). Previous studies have shown a high prevalence of
the lasB gene in P. aeruginosa, irrespective of their isolation
origin (106-108).

P. aeruginosa secretes yellow-green fluorescent pigment
known as pyoverdin (4), that functions as a siderophore to
acquire and transport iron from the environment through
specific protein receptors on the outer membrane (109, 110).
Three types of pyoverdines have been identified, although
each strain of P. aeruginosa produces only one type (109).
Animal models have suggested that pyoverdin is a virulence-
associated factor aspyoderin-deficient mutants demonstrate no
virulence (110). A variety of phenazines are also secreted by
P. aeruginosa, including pyocyanin. Pyocyanin is a blue
redox-active secondary metabolite that is responsible for the
production of a blue-green pigment, commonly used in rapid
diagnosis of P. aeruginosa (111-112). Previous studies have
suggested that pyocyanin is a major virulence factor,
interfering with numerous cell functions (112).

2.10. Antibiotic resistance in P. aeruginosa

Antibiotic resistant (AR)-P. aeruginosa are strongly
associated with nosocomial infections, that are a worldwide
health concern due to the increasing development of MDR
strains (i.e. resistance to at least three antibiotics). Various
therapeutic challenges exist with MDR P. aeruginosa due to
the limit of effective treatment strategies. Current literature is
strongly associated inadequate empirical treatment with
increased rates of mortality and morbidity (113-114). P.
aeruginosa is intrinsically resistant to various antibiotics due
to a low permeability in the outer membrane, which acts as a
selective barrier (115, 116). However, this bacterium is a
highly diverse pathogen that is capable of adaptation to the
surrounding environment. When subjected to antibiotic
selective pressure, the induced response facilitates bacterial
survival and develops antibiotic resistance (115). The
emergence of antibiotic resistance has been reported during
host colonization of CF patients, whereby P. aeruginosa
strains develop and acquire resistance during antimicrobial
therapy (117). Studies by Messadi and colleagues (118) have
reported a strong correlation between increased use of
ciprofloxacin with increased prevalence of ciprofloxacin
resistant strains. Therefore, another factor associated with the
increase in MDR-P. aeruginosa is due to the frequent use of
antimicrobial agents.

In addition, these bacteria utilize different mechanisms to
resist antibiotics, although the presence of a mechanism does
not always justify the source of resistance (113, 117).
Therefore, many researchers have suggested that a variety of
mechanisms are involved including the production of
inactivating enzymes, target site modification, utilisation of
efflux pumps and chromosomal mutations (119). P.
aeruginosa produces B-lactamases; enzymes that hydrolyze
the peptide bond of the PB-lactam ring to inactivate the
antibiotics (120). P. aeruginosa is able to produce various f-
lactamases, including extended-spectrum  f-lactamases
(ESBL), metallo-B-lactamases (MBL) and chromosomal
cephalosporinase (AmpC).
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Various types of MBLs have been described previously
and are carried on integrons (121).Previous studies have
reported that MBL-producing P. aeruginosa in blood stream
infections are associated with high morbidity and mortality
rates (122). AmpC differs to the other B-lactamases for that
the ampC gene is present in all strains of P. aeruginosa,
although it requires a gene mutation, to cause hyper
production and resistance (123).

Carbapenems are commonly used to treat P. aeruginosa
infections due to their effectiveness against B-lactamase prod-
ucing P. aeruginosa. An increased prevalence of carbapenem-
resistant P. aeruginosa has been reported in hospitals worl-
dwide (124, 125). A study conducted between 1996 and 2003
in a United Kingdom medical centre has reported the prev-
alence of imipenem resistant-P. Aeruginosa increasing from
2% to over 40%, with the majority of the isolates belonging to
a single clone (125). Similarly, Vitkauskiene and co-workers
(126) studied the prevalence of carbapenem-resistant P.
aeruginosa over five years at a tertiary university hospital and
showed an increase of 53% to 88% of carbapenem-resistant P.
aeruginosa. In addition, OprD is a specialised porin located in
the outer membrane of P. aeruginosa that facilitates the influx
of amino acids, peptides and imipenem (a carbapenem
antibiotic). Conformational changes in the external loops 2
and 3 of OprD have been shown to inhibit imipenem entrance
into the bacterium (127).

P. aeruginosa is also capable of acquiring resistance
through mutation in specific chromosomal genes (115).
Fluoroquinolone resistance is acquired by modifying type Il
topoisomerases; DNA gyrase (gryA gene) and topoisomerase
IV (parC gene), to inhibit antibiotic binding (128, 129).
Previous studies have suggested that the first target for
fluoroquinolones activity is DNA gyrase, followed by topois-
omerase 1V as the secondary target (129). However, Salma
and colleagues (130) have reported quinolone-resistant P.
aeruginosa isolates without mutations in gyrA and parC
genes, suggesting that another resistance mechanism is also
used for the acquisition of fluoroquinolone resistance, such as
efflux pumps. Efflux pumps rapidly remove toxic substances
(e.g. antibiotics) out of the cytoplasm as a result of hyper
expression of the mexR efflux gene (131, 132). The efflux
pumps are a three component system; the outer membrane
protein, the energy-dependant pump and a linker protein
(132). In P. aeruginosa, four different efflux systems belong
to the resistance-nodulation-division (RND) family including
MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-
OprM (132). Studies have shown a wide-spectrum of
substrates specificity for each efflux pump, including B-
lactams and fluoroquinolones for MexAB-OprM and MexCD-
OprJ (133). Current literature suggests that the overexpression
of one or more Mex pumps is associated with MDR-P.
aeruginosa in clinical settings (131-133).

2.11. P. aeruginosa in the environment

P. aeruginosa as a waterborne pathogen is a growing
concern to public health sectors. Many sources of
environmental water could potentially be acting as a reservoir
for potentially pathogenic strains of P. aeruginosa (8, 41).
Various studies have shown that water resources (including
sewage treatment plants and river water) are highly polluted
with pathogenic bacteria including P. aeruginosa (134, 135).
Public recreational swimming pools have also shown P.
aeruginosa contamination (136-138). In addition, outbreaks of
whirlpool-associated folliculitis and UTI have previously been
reported (139, 140). Grobe and colleagues (137) showed
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mucoid phenotypes (possessing alginate) were able to survive
in chlorinated water better than non-mucoid phenotypes.
Despite this, non-mucoid strains of P. aeruginosa exist in
swimming pool water (106). The presence of P. aeruginosa in
swimming pools is associated with public health risks. Many
studies have associated otitis externa, dermatitis, folliculitis
and chloronychia with the use of swimming pools and hot tubs
(141).

Lutz and Lee (142) studied the prevalence of antibiotic
resistant P. aeruginosa in various swimming pools and hot
tubs. These researchers found 96% of their isolates to be MDR
including resistance to amikacin, aztreonam, gentamicin,
ticarcillin/clavulanic acid and trimeoprim/sulfamethoxazole
(142). In contrast, Tirodimos and colleagues (42) isolated P.
aeruginosa from hydrotherapy pools that have only shown
20% resistance to these antibiotics. It is generally accepted
that the environmental strains of Pseudomonas show very little
resistance to antibiotics however this assumption has not been
fully verified. One major source of antibiotic resistant P.
aeruginosa in the environment is the untreated hospital
wastewater (UHWW). It has been shown that P. aeruginosa
strains isolated from UHWW are commonly resistant to a
number of antibiotics (3, 143). For instance, Fentefria and
colleagues (143) compared P. aeruginosa strains isolated from
UHWW and surface waters and showed a higher prevalence of
MDR P. aeruginosa in the UHWW than the surface water.

P. aeruginosa is also an inhabitant of soil thatcan be
pathogenic to plants (144). Pitondo-Silva and colleagues (145)
isolated P. aeruginosa from soil of different crops. These
researchers found the majority of isolates to be resistant to
aztreonam and Ticarcillin that are commonly used in the
treatment of P. aeruginosa in CF patients (145). Thus,
Wolfgang et al. (93) compared the genome content of P.
aeruginosa isolates from clinical and environment sources’
and concluded that gene conservation exists for P. aeruginosa.

2.12. Genetic diversity of P. aeruginosa

The complete genome of P. aeruginosa has been
sequenced by Stover et al (147), reporting a genome size of 6,
262, 403 base pairs, which suggests that P. aeruginosa has the
largest genomes amongst bacteria, with an estimated 5570
open reading frames (ORF). Of these ORF, 372 have been
defined as functional genes, encoding proteins involved in cell
adhesion and motility (e.g. type IV pili and
exopolysaccharides), virulence factors (e.g. exoenzymes and
the type Il secretion system), LPS synthesis enzymes and
other secreted proteins involved in the pathogenesis as
described above. Other genes expressed in P. aeruginosa, are
encoded for regulatory networks and outer membrane proteins
(e.g. OprDporin family) and efflux systems for antibiotic
resistance. Current literature suggests that the large genome
size and genome complexity are responsible for the ability of
this bacterium to adapt and thrive in a diverse range of
environments (93). This high diversity has also resulted in the
presence of large clonal groups of these bacteria in the
environment.

Various genotypic typing methods are commonly used to
identify persistent clones of these bacteria in clinical settings
or the environment. Tielen and colleagues (148) have shown
that P. aeruginosa strains isolated from UTI and catheter-
associated UTIs are highly heterogeneous. Interestingly, these
researchers found that some of their strains were closely
related to P. aeruginosa clone C; which is a worldwide clone
frequently isolated from the lung of CF patients (148). In a
recent study, Naicker (135) examined the prevalence of Gram-
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negative bacteria including P. aeruginosa in UHWW and their
transition to a receiving STP and survival through its treatment
processes. The results showed P. aeruginosa in UHWW were
genetically distinct, although some strains were present at
different times in the STP. Despite these findings, some
researchers have observed that environmental strains of P.
aeruginosa are genotypically and functionally equivalent to
those isolated from clinical infections (7, 93, 147).

3. Conclusion

Hospitals and healthcare settings are regarded as reservoirs
for large numbers of pathogenic Pseudomonas strains.
Wastewaters from hospitals may contain a large number of
these bacteria some of which can also be MDR. Recent studies
on the prevalence of P. Aeruginosa in UHWW and their
dissemination in the environment suggest that certain clonal
groups of these bacteria have the ability to survive
transmission to the STPs and then through to the finally
treated effluent before being released into surface waters. The
presence and persistence of these bacteria in environmental
waters may pose a great risk to the public health and requires
further work to fully characterize and quantify the input of
MDR P. Aeruginosa strains from the hospitals compared with
those originating from the general community or other
wastewater- related sources.
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