Presence of exoU and exoS Genes in Pseudomonas aeruginosa Isolated from Urinary Tract Infections

Authors
1 Department of Microbiology North Tehran Branch, Islamic Azad University, Tehran, IR Iran
2 Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
3 Department of Chemistry, Applied and Scientific University, Pasargad, Iran
Abstract
Background: Pseudomonas aeruginosa is considered an opportunistic pathogen; several reports indicate that the organism can also cause infections in healthy hosts. Four effector proteins have been described in P. aeruginosa: exoU, exoS, exoT, and exoY. These genes that are translated into protein products related to type III secretion systems. Materials and Methods: A total of 134 samples were isolated, and P. aeruginosa was identified using biochemical tests. Bacterial genomic DNA was extracted, and the presence of the exoSand exoUgenes were detected by PCR. Biofilms were formed by culturing P. aeruginosaon glass slides in rich medium. Results: The exoU(73%), exoS (62%) genes were detected from infections caused by P. aeruginosa in urinary tract infection patients. Among the 119 strains isolated from patients with urinary tract infections. Conclusion: An improved understanding of virulence genes and biofilm formation in P.aeruginosa may facilitate the future development of novel vaccines and drug treatments.

Keywords


  1. Hallin M, Deplano A, Roisin S, Boyart V, De Ryck R, Nonhoff C, et al. Pseudo-outbreak of extremely drug-resistant pseudomonasaeruginosa urinary tract infections due to contamination of an automated urine analyzer. J Clin Microbiol. 2012; 50(3): 580-2.

  2. Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. P seudomonas aeruginosa population structure revisited. PLoS One. 2009; 4(11): e7740.

  3. Bogaerts P, Huang TD, Rodriguez-Villalobos H, Bauraing C, Deplano A, Struelens MJ, et al. Nosocomial infections caused by multidrug-resistant Pseudomonas putida isolates producing VIM-2 and VIM-4 metallo-beta-lactamases. J Antimicrob Chemother. 2008; 61(3): 749-51.

  4. Allydice-Francis K, Brown PD. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables. Int J Microbiol. 2012; 2012: 426241. 

  5. Sun Y, Karmakar M, Taylor PR, Rietsch A, Pearlman E. ExoS and ExoT ADP ribosyltransferase activities mediate Pseudomonas aeruginosa keratitis by promoting neutrophil apoptosis and bacterial survival. J Immunol. 2012; 188(4): 1884-95.

  6. Al-Hazzaa SA, Tabbara KF. Bacterial keratitis after penetrating keratoplasty. Ophthalmology. 1988; 95(11): 1504-8.

  7. Bharathi MJ, Ramakrishnan R, Meenakshi R, Kumar CS, Padmavathy S, Mittal S. Ulcerative keratitis associated with contact lens wear. Indian J Ophthalmol. 2007; 55(1): 64-7.

  8. Green M, Apel A, Stapleton F. Risk factors and causative organisms in microbial keratitis. Cornea. 2008; 27(1): 22-7. 

  9. Karthikeyan RS, Priya JL, Leal SMJR, Toska J, Rietsch A, PrajnaV, et al. Host response and bacterial virulence factor expression in Pseudomonas aeruginosa and Streptococcus pneumoniae corneal ulcers. PLoS One. 2013; 8(6): e64867. 

  10. Bharathi MJ, Ramakrishnan R, Meenakshi R, Shivakumar C, Raj DL. Analysis of the risk factors predisposing to fungal, bacterial & Acanthamoeba keratitis in south India. Indian J Med Res. 2009; 130(6): 749-57.

  11. Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I, Jänsch L, et al. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS One. 2013; 8(8): e71845. 

  12. Gastmeier P, Geffers C. Nosocomial infections in Germany. What are the numbers based on the estimates for 2006? Dtsch Med Wochenschr. 2008; 133(21): 1111-5.

  13. Hansen WL, Van-der-Donk CF, Bruggeman CA, Stobberingh EE, Wolffs PF. A real-time PCR-based semi-quantitative breakpoint to aid in molecular identification of urinary tract infections. PLoS One. 2013; 8(4): e61439. 

  14. Broeren MA, Bahçeci S, Vader HL, Arents NL. Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J Clin Microbiol. 2011; 49(3): 1025-9.

  15. Jolkkonen S, Paattiniemi EL, Kärpänoja P, Sarkkinen H. Screening of urine samples by flow cytometry reduces the need for culture. J Clin Microbiol. 2010; 48(9): 3117-21. 

  16. Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008; 21(1): 26-59.

  17. Shigemura K, Arakawa S, Sakai Y, Kinoshita S, Tanaka K, Fujisawa M. Complicated urinary tract infection caused by Pseudomonas aeruginosa in a single institution (1999-2003). Int J Urol. 2006; 13(5): 538-42.

  18. Liao KS, Lehman SM, Tweardy DJ, Donlan RM, Trautner BW. Bacteri­ophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J Appl Microbiol. 2012; 113(6): 1530-9.

  19. Wagenlehner FM, Naber KG. Current challenges in the treatment of complicated urinary tract infections and prostatitis. Clin Microbiol Infect. 2006; 12 (Suppl 3): 67-80.

  20. Mishra MP, Padhy RN. In Vitro antibacterial efficacy of 21 Indian timber-yielding plants against multidrug-resistant bacteria causing urinary tract infection. Osong Public Health Res Perspect. 2013; 4(6): 347-57.

  21. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS and ExoT to virulence in the lung. Infect Immun. 2004; 72(12): 6969-77.

  22. Roux D, Ricard JD. Novel therapies for Pseudomonas aeruginosa pneumonia. Infect Disord Drug Targets. 2012; 11(4): 389-94.

  23. Lin HH, Huang SP, Teng HC, Ji DD, Chen YS, Chen YL. Presence of the exoU gene of Pseudomonas aeruginosa is correlated with cytotoxicity in MDCK cells but not with colonization in BALB/c mice. J Clin Microbiol. 2006; 44(12): 4596-7.

  24. Sato H, Frank DW. ExoU is a potent intracellular phospholipase. Mol Microbiol. 2004; 53(5): 1279-90.

  25. Schmalzer KM, Benson MA, Frank DW. Activation of ExoU phospholipase activity requires specific C-terminal regions. J Bacteriol. 2010; 192(7): 1801-12.

  26. Tyson GH, Hauser AR. Phosphatidylinositol 4, 5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun. 2013; 81(8): 2873-81.

  27. Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS One. 2012; 7(8): e42973. 

  28. Kart D, Tavernier S, Van-Acker H, Nelis HJ, Coenye T. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. Biofouling. 2014; 30(3): 377-83. 

  29. Cooper R, Jenkins L, Hooper S. Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. J Wound Care. 2014; 23(3): 93-6.

  30.  LaBauve AE, Wargo MJ. Detection of host-derived sphingosine by Pseudomonas aeruginosa is important for survival in the murine lung. PLoS Pathog. 2014; 10(1): e1003889. 

  31. Janjua HA, Segata N, Bernabò P, Tamburini S, Ellen A, Jousson O. Clinical populations of Pseudomonas aeruginosa isolated from acute infections show a wide virulence range partially correlated with population structure and virulencegene expression. Microbiology. 2012; 158 (Pt 8): 2089-98.

  32. Veesenmeyer JL, Hauser AR, Lisboa T, Rello J. Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med. 2009; 37(5): 1777-86.

  33. El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H. Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med. 2012; 40(4): 1157-63.

  34. Shafikhani SH, Morales C, Engel J. The Pseudomonas aeruginosa type III secreted toxin ExoT is necessary and sufficient to induce apoptosis in epithelial cells. Cell Microbiol. 2008; 10(4): 994-1007.

  35. Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S. Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology. 2000; 146 (Pt10): 2531-41.

  36.  Anderson DM, Feix JB, Monroe AL, Peterson FC, Volkman BF, Haas AL, et al. Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase. J Biol Chem. 2013; 288(37): 26741-52.

  37. Idris SN, Desa MN, Aziz MN, Taib NM. Antimicrobial susceptibility pattern and distribution of exoU and exoS in clinical isolates of Pseudomonas aeruginosa at a Malaysian hospital. Southeast Asian J Trop Med Public Health. 2012; 43(1): 116-23.

  38. Diaz MH, Hauser AR. Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun. 2010; 78(4): 1447-56.

  39. Breidenstein EB, Janot L, Strehmel J, Fernandez L, Taylor PK, Kukavica-Ibrulj I, et al. The Lon protease is essential for full virulence in Pseudomonas aeruginosa. PLoS One. 2012; 7(11): e49123.

  40. Lomholt JA, Poulsen K, Kilian M. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect Immun. 2001; 69(10): 6284-95.

  41. Hirakata Y, Finlay BB, Simpson DA, Kohno S, Kamihira S, Speert DP. Penetration ofclinical isolates of Pseudomonas aeruginosa through MDCK epithelial cell monolayers.J Infect Dis. 2000; 181(2): 765-69.

  42. Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB. Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun. 2000; 68(7): 3998-4004.