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Genetic Determinants Differences between Vibrio cholerae Biotypes
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Vibrio cholerae O1 are classified into two biotypes, classical and El Tor based on susceptibility to bacteriophages and some biochemical
properties, each encoding a biotype-specific genetic determinants. Before 1961, most epidemics had been caused by the classical biotype.
However, with the passage of time, the classical biotype missed from the scenario and the El Tor emerged as the major biotype causing the
cholera in humans. The present cholera global pandemic is attributed to a change among seventh pandemic strains and emergence of V.
cholerae 0139, V. cholerae O1 El Tor hybrid, and V. cholera O1 EI Tor with altered cholera toxin subunit B. The V. cholerae biotypes are
not only different in phenotype but also human infections caused by them are different clinically. Infection with classical V. cholerae O1 more
frequently produces severe infection than does El Tor, suggesting that the genetic and phenotypic differences between the two biotypes may
also be reflected in their pathogenic potential. Considering the recent emergence of “hybrid biotype” and “El Tor variant” in different areas
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and in our country, we reviewed differences in genetic structure of V. cholerae biotypes.

1. Background

Cholera is described by a severe watery diarrhea caused
by toxigenic Vibrio cholerae (1). As yet seven distinct
pandemics of cholera have recorded since the diagnosis of
the first one in 1817 (2). V. cholerae is classified into more
than 200 serogroups, on the basis of somatic antigen called
as the lipopolysaccharide O antigen. At the first and until
in recent times, serogroup O1 was supposed to responsible
serogroup for all cholera epidemics and endemics, have
occured. Serogroup O1 has two main serotypes Ogawa and
Inaba. The Hujikoma serotype has been rarely reported.
These serotypes have been further characterized into two
well established biotypes called El Tor and Classical based
on susceptibility to bacteriophages and some biochemical
properties (3).

The most significant event in the epidemiology of
cholera occurred throughout late 1992, when a new
epidemic serogroup of V. cholerae, nominated 0139,
appeared in the coastal regions of India and Bangladesh
and spread to neighboring countries, probably, lead to
initiating of a eighth pandemic of cholera (4, 5). The
serogroups O1 and 0139, as mentioned above, contained
strains that possess epidemic and pandemic potential (2,
6).

Until 1961 most epidemics had been caused by the Classical
biotype. However, with the passing of time the Classical biotype
went missing and the El Tor appeared as the major biotype that
caused cholera in humans (7). It was concluded that passing
from sixth to seventh cholera pandemic resulted in  changing
from V. cholerae O1 Classical to O1 El Tor biotype (8). Several
evidences suggest that O139 is closely related to and is derived
from the EI Tor biotype of V. cholerae O1 by the replacement of
genes encoding the 0139 antigen and acquisition of the capability
to produce a capsule (9-13).

Within this time, the El Tor biotype was the agent of
most outbreaks; however, the Classical biotype as yet was

responsible for the isolated cases until 1992. These cases
involved a wide outbreaks in West Pakistan in 1968 and the
emergence of the Classical biotype in Bangladesh in 1979,
with a constant presence until 1993 (14). However, since
2001, some clinical isolates emerged that possessed EI Tor
biotype background but revealed some Classical biotype
characters (10, 15-20).

As aresult, the current global pandemic of cholera is attributed
to a change between seventh pandemic strains and emergence of
V. cholerae 0139, V. cholerae O1 EIl Tor hybrid, and V. cholerae
O1 El Tor with different cholera toxin subunit B (8).

Classical and El Tor are distinguished primarily based on
several phenotypic properties such as susceptibility to
polymyxin B, chicken cell agglutination (CCA), haemolysis
of sheep erythrocytes, Voges-Proskauer (VP) test and phage
susceptibilities (2, 9).

The V. cholerae biotypes are not only different in
phenotype but also human infections caused by them are
different clinically. Infection with classical V. cholerae O1 is
more frequently severe than El Tor, suggesting that the genetic
and phenotypic differences between the two biotypes may also
be reflected in their pathogenic potential (21).

2. Context
2.1. Genetic determinants in pathogenic V. cholerae

V. cholerae, similar to other bacteria is supposed to have be
alive extended before their human host. The pathogenic clones
therefore, have evolved from the aquatic environments and
obtained the potency to colonize the human intestine by the acg-
uisition of genetic determinants, then a few strains showed
pathogenic properties(22). Two principle properties of V. cholerae
that resulted in assessing as the public health significance consist
of the acquisition of O1 or O139 antigens, that acts as an
epidemic potential indicator and Cholera Toxin (CT) production
which is responsible for the severe diarrhea (2). However genetic
analysis have shown that in addition to CT gene, all the toxigenic
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V. cholerae strains carry the gene encoding toxin-coregulated
pilus (TCP) and toxR gene which regulates the expression of CT
and TCP proteins (23). All the virulence genes in V. cholerae do
not act individually but they are part of larger genetic structures
(24).

Genetic determinants in pathogenic V. cholerae consist of
CTX prophage (cholera enterotoxin), TCP island or Vibrio
Pathogenicity Island (VPI-1, 2), Vibrio Seventh Pandemic
Island (VSP-1 and VSP-2), Integrin Island and RTX (repeats
in toxin) toxin gene cluster (25). These determinants vary
among different V. cholerae serogroups and biotypes.

In the both biotypes, cholera enterotoxin (CT) and the
toxin-coregulated pilus (TCP) as colonization factor are the
significant virulence factors that are necessary for the
infection (26, 27).

2.2. CTX ¢ in V. cholerae biotypes

The CTX genetic element is linked to ctxAB operon that
encodes the A and B subunits of CT. The studies have revealed
that the CTX genetic determinant relates to the genome of a
lysogenic filamentous bacteriophage called CTX®. The
dissemination of this bacteriophage may be associated with the
derivation of toxigenic V. cholerae strains from nontoxigenic
progenitors (28). In El Tor strains of V. cholerae, numerous
copies of CTX prophage are arranged randomly but the number
and arrangement of the CTX elements and their associated
repetitive sequences can be different (7, 29). The DNA of
CTX®- is usually integrated at either one locous on
chromosome | or two loci on both chromosomes within the V.
cholera genome of El Tor and Classical biotypes, respectively
(8, 30, 31).

The CTX element is composed of two main regions termed
Core and RS sequence. The core is the principle part that encodes
different virulence factors such as CT, zonula occludens toxin
(Zot), accessory cholera enterotoxin (Ace), core encoded pilin
(Cep) and an open reading frame of unknown function (OrfU).
The core region is flanked by one or further copies of a repetitive
sequence termed as RS1 (32). Divergence between repetitive
sequences has been proven by different analysis and revealed that
two almost identical sequences are present determined as RS1
(2.7 kb) and RS2 (2.4 kb), that are generically referred to as the
RS sequence (32).

Three approximately identical open reading frames
(ORFs) located on RS sequences that in RS2 were defined as
rstR, rstA and rstB. An additional ORF existed in RS1 and
designated rstC (33). The rstR and flanking sequences are
biotype specific in El Tor (rstRET) and Classical (rstRe2s)
strains (34).

It was determined that only in toxigenic V. cholerae O1 El
Tor and 0139 strains, cholera toxin prophage region (CTX®)
is often flanked by RS1 element containing rstC gene (figure
1). The RS1 sequence which is closely linked to CTX® were
not detected in Classical V. cholera and often dispersed with
CTX prophages in El Tor strains, then the CTX prophage
arrangements in Classical strains will not produce extra
chromosomal CTX DNA element and virions (35).

A toxin-linked cryptic (TLC) element and RTX toxin (rtxA)
with its activator (rtxC) and transporter (rtxBD) genes, are located
at the upstream and downstream of the CTX genetic element,

respectively (36). The product of RTX gene cluster in EI Tor V.
cholerae have a cytotoxic activity against HEp-2 cells in vitro.
RtxA toxin resembles  other RTX toxin family and contains a
GD-rich repeated motif in its structure. RtxC, an activator, and
RtxB -RtxD, ABC transporter system, are necessary for RtxA
activity. In V. cholerae strains of the Classical biotype, as a result
of a deletion in gene cluster, eliminates rtxC and cytotoxic
activity. Other strains, that the responsible of the current cholera
pandemic, possess a functional gene cluster and demonstrate
cytotoxic activity (36). Cholera toxin, the major virulence factor of
V. cholerae, is consisted of two functional units, an enzymatic
subunit A, (27 kDa) and receptor-binding subunit B composed of
five identical 11.6 kDa peptides (37). Although the sequences of the
ctxA gene encoding cholera toxin A subunit is identical between
Classical and EI Tor strains , however, the sequence of ctxB, the
gene encoding the B subunit of CT is different in two nucleotides
at positions 115 and 203, among the El Tor and Classical biotypes
that result in differences in two amino acids (cytosine in the
Classical and thymine in El Tor biotype) (17). The El Tor variant
that has emerged recently, is a V. cholerae O1 that shows the
typical El Tor biotype proprities but , produces cholera toxin of the
Classical biotype (6, 9, 17, 38). In Bangladesh, The seventh
pandemic prototype with ctxB sequence of El Tor strains have been
completely replaced by El Tor variant and has disseminated in
other countries in Asia and Africa (38-41). Nair and et al., 2006
reported the isolation of the El Tor variant in Bangladesh (38),
subsequently, this variant strains have been isolated from several
countries and regions in Asia and Africa (9, 39, 42, 43). Recently
published reports represent that some of the clinically isolated El
Tor variants produce higher levels of cholera toxin than classical
biotype strains (44).

A retrospective study of V. cholerae O1 strains over a period
of more than a decade established that the hybrid CTX prophage
with El Tor rstR and Classical ctxB completely replaced El Tor
type since 1995 in Kolkata, India and other areas (41).

2.3. Vibrio Pathogenicity Island in V. cholerae
biotypes

TCP, a rigid pilus colonization factor, is a  critical
component of the infection strategy and colonization of V.
cholere in the brush borders of the small intestine and is
under the same genetic control as CT (27).The Vibrio
pathogenicity island (VPI) is one of the primary genetic
elements which is necessary for the emergence of epidemic V.
cholerae. It includes several gene clusters, involving the tcp
gene cluster that produces the type IV pilus known as TCP
that is a major colonization factor (23, 27) and functions as
the CTX® receptor (31). The VPl seems to be encoded by
filamentous phage and can also form a replicative plasmid (45,
46). The VPI also contains tcpP, tcpH genes which encode
proteins that regulate virulence, (Figure 2) (47-51). It was
indicated that VPI has the similar specific insertion site in
chromosome of both Classical and El Tor strains (26). The
VPI of El Tor biotype is 41,272 bp and encodes 29 predicted
proteins, whereas in the Classic biotype it is 41,290 bp (26).
The TCP is a polymer of repeating subunits of the major pilin
protein TcpA that is found within the Vibrio pathogenicity
island (52).
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Figure 1. Schematic representation of the CTX genetic element and the flanking regions in strain N16961(19, 33).
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In the central segment of VPI, intragenic spaces of the
tepl-tcpP and tcpH-tcpA have high levels of variation,
however all the intergenic regions in this part have higher
levels than the left and right segments in Classical and El tor
biotypes (26).

The sequence of tcpA from El Tor strain N16961 is same to
that of 0139 strain MO3 (53) but shows significant deflection
from the Classical biotype gene, particularly in the segment
encoding the C-terminal region of the pilin, where contained
epitopes that recognized by the protective monoclonal antibodies
(54-56). Although 75% nucleotide similarity have been observed
in the major pilin protein TcpA known to be different
significantly among the El Tor and Classical biotypes (53, 57).
The variation in TcpA mainly at its C terminus provides the
observation of biotype specific differences in the antigenic
epitopes and antibody protection (56). This specificity locates
around the disulfide loop between the amino acid 120 and 186
where the majority of changes influencing the distribution of
charged amino acid are localized (Figure 3).

It is reported that the tcp cluster of Classical and EIl Tor are
highly similar (98% identity). Considerable variation have
been detected only within the tcpl-tcpP (89% identity) and
tcpH-tcpA (87% identity) intragenic regions and in the C-
terminus coding domain of tcpA (77% identity) (58).

The VPI-2 with size of 57+3kb, displays all the features of a
pathogenicity island and is present in pathogenic V. cholerae
while non-pathogenic isolates do not harbor this region. The VVPI-
2 containes several gene clusters such as a restriction/
modification system like hsdR and hsdM and genes are
necessary for the usage of amino sugars such as nan-nag region.

It is determined that toxigenic V. cholerae O1 serogroup El
Tor or Classical biotypes carried VPI-2, whereas non-toxi-
genic isolates lacked this island (59).

2.4. MSHA in V. cholerae biotypes

One of the main features that distinguishes EI Tor biotypes
from the Classical is the expression of a cell-associated
mannose-sensitive  Hemagglutinin  (MSHA) (60). This
hemagglutinin has been associated with the expression of a
pilus and is proposed to be a colonization factor for El Tor
strains (60).

2.5. HIyA in V. cholerae biotypes

Comparison of nucleotide sequences of hlyA gene, that
encodes haemolysin, between Classical and El Tor strains
revealed the deletion ofll bp sequence in Classical strains
results in producing a truncated protein (27kDa) without
haemolytic functionality, while in El Tor strains the HIyA is
intact 82kDa with biological activity (61).

2.6. VSP in V. cholerae biotypes

Two genomic regions were assigned to the V. cholerae
isolates related to seventh pandemic including island-1 (VSP-
I) and VSP-Il. These regions were special to seventh
pandemic EIl Tor isolates (62). The VSP-I and VSP-1I showed
several properties of pathogenicity islands. The VSP-I covers
16 kb region containing 11 ORFs, with a 40% GC content in
contrast to 47% for the entire genome (62). The VSP-II region
with the size of 7.5kb encompasses eight ORFs, that encode a
regulator of transcription and a ribonuclease H1 (62).

These structures encode genes with hypothetical functions
that are supposed to be required for evolutionary fitness and
epidemic spread of the seventh pandemic clone were found
particularly among El Tor biotype isolates not in the Classical
(25, 62).

Left segment

Right segment

TCP gene cluster

Figure 2. Schematic structure of VVPI (39.5kb) in V. cholerae El Tor strain N16961. (47).
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Figure 3. Differences in charged aa among EIl Tor and Classical TcpA. The different aa are shown (black boxes) and contained :
Aspr®—Gly; Ala®®— Asp; Glu*®—Ala; Lys'">—Ala; Asp'®—Asn; Lys'®’—Thr, for Classical and El Tor strains, respectively. The disulfide
bond is formed between the Cys residues at aa 120 and 186 of TcpA(18).
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2.7. Expression of virulence genes in biotypes

The production of major virulence factors is controlled by a
complex cascade of transcriptional regulators (63). This cascade
is positively controlled by the regulatory proteins ToxR, ToxS and
TcpP, TepH, that in turn control the expression of regulator ToxT
(51, 64-66). The expression of TcpP and TcpH is also regulated
by two other regulatory proteins, AphA and AphB (67). The
conditions for expression of ctx, tcp and toxT genes in El Tor
biotype contain: complex growth medium, the incubation of
cultures at 37°C  without motion for 4 h, followed by overnight
incubation at 37°C with shaking. In contrast, environmental
signals, including pH, temperature, osmolarity, and amino acids
regulate the gene expression in Classical biotype (68). It is shown
that the sequence differences in promoters of TcpP, H between
the Classical and EIl Tor biotypes affect the interaction of AphB
with them and result in variation of TcpP and TcpH production.
(69). The timing of the transcription of tcpP, H is also different
between the Classical and El Tor biotypes (70). It has also been
determined that a total of 524 genes (13.5% of the genome)
expressed differentially between two biotypes (63). In the El Tor
biotype,the expression of proteins which required for biofilm
formation, chemotaxis, and transport of amino acids, peptides and
iron is higher. Differences in the expression of these genes may
cause to the increased survival ability of the El Tor biotype in
environmental reservoirs. In contrast, the expression of virulence
factors was greater in the Classical than El Tor biotype. In
addition, the expression of vieSAB genes, as regulators of ctxA
transcription, are at a five fold higher level in the Classical
biotype (63). A large portion (20.8%) of the genes that are
differentially expressed in the Classical against the EI Tor biotype
are regulated by VieA, that were originally identified as the
regulators of ctxA transcription in the Classical biotype(63).

2.8. Biotyping of V. cholerae O1

As mentioned above, current tests for distinguishing
biotype are not sufficient to complete the identification and
supplementary genotypic and phenotypic tests should be
performed to characterize the variants. Raychoudhuri and
colleagues; 2008 proposed a modification of the existing
biotyping scheme with several molecular marker genes (Table
1) (9). We suggest that biotyping will play an important role in
understanding the epidemiology and infection severity of the
emerging strains of V. cholerae O1 in future.

Table 1. New procedure for biotyping of V. cholerae O1(9)

Biotype
Feature : El
Classi El Tor Hybrid
cal Tor ;
variant
Voges-proskauer test - + + +/-
Susceptibility to . } ) -
polymyxin B (50U)
Agglutination of ) ,
Chicken cell * + +
Lysis by classical 1V . } ) -
phage
Lysis by El Tor phage V - + + +/-
Epitype of CT CT1 CT2 CT1 CT1/CT2
classic El classi El Tor/
e al Tor cal classical
rtxC - + + +/-
tlc + + + +/-
Allele of tcpA classic Bl gy Variable
al Tor
RS element Rs2 RSL RSL - pe1 Rs2/Rs2

RS2 RS2/RS2
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