Microbial Safety of Masske: A Traditional Butter from South of Khorasan, Genetic Similarity of Pathogenic Bacteria Indicators

Authors
1 Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Department of Food science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, IR Iran
3 Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, IR Iran
Abstract
Background: Masske is a traditional Iranian butter made from yoghurt. The first aim of this study was to isolate and identify the nonlactic pathogenic microflora by culture and molecular methods of identification, and the second purpose was to identify genetic similarity of the isolated bacteria in Masske.
Materials and Methods: In order to detect pathogenic dominant indicator microorganisms, a number of 150 bacterial isolates from three Masske samples, which may comprise the repetitive isolates and could grow on appropriate media for Staphylococci and E.coli, were classified into 8 groups according to their phenotypic characterization followed by chemical tests. Then 2approximately similar isolates from each group were chosen (total 18 isolates; we selected 3 isolates from 2 groups of eight), and the sequencing of 16S rRNA gene was done for subsequent analysis.
Results: Among 18 bacterial isolates, Staphylococcus hominis was the most frequently isolated species during the manufacture of Masske as the presence of this bacterium was confirmed in 14 out of 18 samples. Also, the presence of Staphylococcus epidermidis and Escherichia coli was identical across the samples (for each one, 2 out of 18).
Conclusion: Our results based on cultural and molecular methods suggest making some improvements to the hygiene of Masske manufacture due to the high population of minor pathogens.

Keywords


  1. AlegríaA, Álvarez-Martín P, Sacristán N, Fernández E, Delgado S, Mayo B. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow's milk. Int J Food Microbiol.2009; 136(1): 44-51.

  2. Palys T, Nakamura LK, Cohan FM. Discovery and classification of ecological diversity in the bacterial world: the role of DNA sequence data. Int J Syst Bacteriol. 1997; 47(4):1145-56.

  3. Topisirovic L, Kojic M, Fira D, Golic N, Strahinic I, Lozo J. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int J Food Microbiol. 2006; 112(3):230-5.

  4. VanHylckama VJE, Rademaker JL, Bachmann H, Molenaar D, Kelly WJ, Siezenm RJ. Natural diversity and adaptive responses of Lactococcuslactis. Curr Opin Biotechnol. 2006; 17(2):183-90.

  5. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G. Microbes from raw milk for fermented dairy products. Int Dairy J. 2002; 12(2):91-109.

  6. Stanley G. Cheeses. In: BJB Wood. Microbiology of Fermented Foods. 2nd ed. England: Blackie Academic & Professional, Ltd; 1998.p. 263-307.

  7. Harrigan WF. Laboratory Methods in Food Microbiology. 3rd ed. England: Academic Press, Ltd; 1998.

  8. Zamfir M, Vancanneyt M, Makras L, Vaningelgem F, Lefebvre K, Pot B, et al. Biodiversity of lactic acid bacteria in Romanian dairy products. Syst Appl Microbiol. 2006; 29(6):487-95.

  9. Jablonski LM, Bohach GA. Staphylococcus aureus.In: Michael PD, Robert LB. Food microbiology: fundamentals and frontiers.1st ed. USA: ASM Press, Ltd; 1999.p. 353-75.

  10. Jorgensen HJ, Mork T, Caugant DA, Kearns A, Rorvik LM. Genetic Variation among Staphylococcus aureus strains from Norwegian Bulk Milk. Appl environ Microbiol. 2005; 71(12):8352-61.

  11. Le Loir Y, Baron F, Guatier M. Staphylococcus aureus and food poisoning. Genetics and Molecular Research.2003; 2(1):63-76.

  12. Foschino R, Invernizzi A, Barucco R, StradiottoK. Microbial composition, including the incidence of pathogens, of goat milk from the Bergamo region of Italy during a lactation year. J Dairy Res. 2002; 69(2):213-25.

  13. Scallan E, Hoekstra RM, Angulo FJ. Foodborne illness acquired in the United States major pathogens. Emerg Infect Dis. 2011; 17(1):7-15.

  14. Lima CG, Loiko MR, Casarin LS, Tondo EC. Assessing the epidemiological data of Staphylococcus aureus food poisoning occurred in the State of Rio Grande do Sul, Southern Brazil. Braz J Microbiol. 2013; 44(3):759-63.

  15. BalabanN, Rasooly A. Staphylococcal enterotoxins.  Int J Food Microbiol.2000; 61(1):1-10.

  16. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. Biomed Res Int. 2014; 2014: 827965.

  17. ArgudínMÁ, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins. 2010; 2(7):1751-73.

  18. Dingwell RT, Leslie KE, Schukken YH, Sargeant JM, Timms LL. Evaluation of the California mastitis test to detect an intramammary infection with a major pathogen in early lactation dairy cows. Can Vet J. 2003; 44(5):413–416.

  19. Schlegelova J, Vlkova H, Babak V, Holasova M, Jaglic Z, Stosova T, et al. Resistance to erythromycin of Staphylococcus spp. isolates from the food chain. Vet Med. 2008; 53(6):307-14.

  20. Luthje P, Schwarz S. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide lincosamide resistance phenotypes and genotypes. J Antimicrob Chemother. 2006; 57(5):966-9.

  21. Pyorala S, Taponen S. Coagulase-negative staphylococci emerging mastitis pathogens. Vet Microbiol. 2009; 134(1-2):3–8.

  22. Otto MR. Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats and horses. 9th ed. W.B. Saunders Company Ltd; 2000.

  23. Simojoki H, Orro T, Taponen S, Pyorala S. Host response in bovine mastitis experimentally induced with Staphylococcus chromogenes. Vet Microbiol. 2009; 134(1-2):95–9.

  24. Pilipčincová I, Bhide M, Dudriková E, Trávniček M. Genotypic characterization of coagulase-negative staphylococci isolated from sheep milk in Slovakia. Acta Vet Brno. 2010; 79(2): 269–75.

  25. El-Jakee JK, Aref NE, Gomaa A, El-Hariri MD, Galal HM, Omar SA, et al. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int J Vet Sci Med. 2013; 1(2):74-8.

  26. Gonfa A, Foster H A, Holzapfel WH. Field survey and literature review on traditional fermented milk products in Ethiopia. Int J Food Microbiol. 2001; 68(3):173-86.

  27. Ongol MP, Asano K. Main microorganisms involved in the fermentation of Ugandan ghee. Int J Food Microbiol. 2009; 133(3):286-91.

  28. Sserunjogi ML, Abrahamsen RK, Narvhus J. A review paper: current knowledge of ghee and related products. Int Dairy J. 1998; 8(8):677-88.

  29. Jokovic N, Nikolic M, Begovic J, Jovcic B, Savic D, Topisirovic L. A survey of the lactic acid bacteria isolated fromSerbian artisanal dairy product kajmak. Int J Food Microbiol. 2008; 127(3):305-11.

  30. Karl-Heinz S. Gram-positive cocci. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W,Rainey FA, et al. Bergey’s Manual of Systematic Bacteriology. USA: Springer Dordrecht Heidelberg London New York, Ltd; 2009.

  31.  Van Hoorde K, Verstraete T, Vandamme P, Huys G. Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses. Food Microbiol. 2008; 25(7):929-35.

  32. Schleifer KH, Bell JA. Genus Staphylococcus. In: Fred AR, Karl-Heinz S. Bergey's Manual of Systematic Bacteriology.1st ed. USA: Williams and Wilkins,Ltd; 2005. p. 392-433.

  33.  Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, Munro K, Alatossava T. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol. 2000; 66(1):273-303.

  34.  Gala E, Landi S, Solieri L, Nocetti M, Pulvirenti A, Giudici P. Diversity of lactic acid bacteria population in ripened ParmigianoReggiano cheese. Int J Food Microbiol. 2008; 125(3):347-51.

  35. Stackebrandt E, Goodfellow M. 16S/23S rRNA sequencing. In: Lane DJ. Nucleic Acid Techniques in Bacterial Systematics. 1sted. John Wiley and Sons, Ltd;1991. p. 115-75.

  36. Blast. Basic Local Alignment Search Tool, National Center for Biotechnology Information, National Library of Medicine (NLM), National Institutes of Health (NIH). USA. 2011; http://www.ncbi.nlm.nih.gov/BLAST.

  37.  Tamura K. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731-9.

  38.  Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406-25.

  39.  Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004; 101(30):11030-5.

  40. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985; 39(4):783-91.

  41. Sengül M. Microbiological characterization of civil cheese, a traditional Turkish cheese: microbiological quality, isolation and identification of its indigenous Lactobacilli. World J Microbiol Biotechnol. 2006; 22(6):613-8.

  42. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. J Mol Biol. 2000; 17(4):540-52.

  43. Hebremedhin BG, Layer F, König W, König B. Genetic Classification and Distinguishing of Staphylococcus Species Based on Different Partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf Gene Sequences. J Clin Microbiol. 2008; 46(3):1019-25.

  44. Richard KR.The microbiology of raw milk.  In: James VC. Dairy Microbiology Handbook. 3rd ed. USA: Wiley and Sons, Ltd; 2002. p. 39-85.

  45. Pitkala A, Haveri M, Pyorala S, Myllys V, Honkanen-Buzalski T. Bovine mastitis in Finland 2001 – prevalence, distribution of bacteria and antimicrobial resistance. J Dairy Sci. 2004; 87(8):2433-41.

  46. Osteras O, Solverod L, Reksen O. Milk culture results in a large Norwegian survey effect of season, parity, days in milk, resistance and clustering. J Dairy Sci. 2006; 89(3):101-23.

  47. Tenhagen BA, Koster G, Wallmann J, Heuwieser W. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg, Germany. J Dairy Sci. 2006; 89(7):2542-51.

  48. Lim GH, Leslie KE, Kelton DF, Duffield TF, Timms LL, Dingwell RT. Adherence and efficacy of an external teat sealant to prevent new intramammary infections in the dry period J Dairy Sci. 2007; 90(3): 1289-300.

  49. Koivula M, Mantysaari EA, Pitkala A, Pyorala S. Distribution of bacteria and seasonal and regional effects in a new database for mastitis pathogens in Finland. Acta Agr Scand A-An. 2007; 57(2):89-96.

  50. Rasheed MU. Staphylococcus epidermidis: A commensal emerging as a pathogen with increasing clinical significance especially in nosocomial infections. Int J Microbiol. 2007; 3(2):1453-64.