1. Ghasemi A, Salari MH, Zarnani AH, Pourmand MR, Ahmadi H, Shirazi MH, et al. Optimization and efficient purification in production of Brucellamelitensisrecombinant HSP and TF proteins with low endotoxin contents. Jundishapur J Microbiol. 2013; 6(7): e6875.
2. Bahador A, Mansoori N, Esmaeili D, Amini Sabri R. Brucellosis: prevalence and retrospective evaluation of risk factors in western cities of Tehran province, Iran J Bacteriol. 2012; 4(3): 33-7.
3. Al-Majali AM, Shorman M. Childhood brucellosis in Jordan: prevalence and analysis of risk factors. Int J Infect Dis. 2009;13(2):196-200.
4. Haag AF, Myka KK, Arnold MF, Caro-Hernandes P, Ferguson GP. Importance of lipopolysaccharide and cyclic β-1, 2-glucans in Brucella-mammalian infections. Int J Microbiol. 2010; 2010; 124509.
5. Soler-Lloréns P, Gil-Ramírez Y, Zabalza-Baranguá A, Iriarte M, Conde-Alvarez R, Zunipa-Riga A, et al. Mutants in the lipopolysaccharide ofBrucellaovis are attenuated and protect against B. ovis infection in mice. Vet Res. 2014; 45(1):72.
6. Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol. 2011;65:523-41.
7. Pappas G. The changing Brucella ecology: novel reservoirs, new threats. Int J Antimicrob Agents. 2010; 36(Suppl 1): S8-11.
8. Skendros P, Boura P, Kamaria F, Raptopoulou-Gigi M. CD80/CD28 co‐stimulation in human brucellosis. ClinExpImmunol. 2006; 146(3):400-8.
9. Silva TM, Paixão TA, Costa ÉA, Xavier MN, Cortez Sa J, Moustacas VS, et al. Putative ATP-binding cassette transporter is essential for Brucellaovis pathogenesis in mice. Infect Immun. 2011; 79(4):1706-17.
10. Ghasemi A, Salari MH, Zarnani AH, Pourmand MR, Ahmadi H, Mirshafiey A, et al. Immunereactivity of Brucellamelitensis vaccinated rabbit serum with recombinant Omp31 and DnaK proteins. Iran JMicrobiol. 2013; 5(1):19-23.
11. Xavier MN, Paixão TA, Poester FP, Lage AP, Santos RL. Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetusesexperimentally infected withBrucellaabortus. J Comp Pathol. 2009; 140(2):149-57.
12. Blasco JM, Molina-Flores B. Control and eradication of Brucellamelitensisinfection in sheep and goats. VetClin North Am FoodAnimPract. 2011; 27(1): 95-104.
13. Luna-Martı́nez JE, Mejı́a-Terán C. Brucellosis in Mexico: current status and trends. VetMicrobiol. 2002; 90(1): 19-30.
14. Fugier E, Pappas G, Gorvel J-P. Virulence factors in brucellosis: implications for aetiopathogenesis and treatment. Expert Rev Mol Med. 2007; 9(35):1-10.
15. Guillemin J. Scientists and the history of biological weapons. EMBO Rep. 2006; 7(1S): S45-9.
16. Martirosyan A, Von Bargen K, Gorvel VA, Zhao W, Hanniffy S, Bonnardel J, et al. In Vivo identification and characterization of CD4+ Cytotoxic T cells induced by virulent Brucellaabortusinfection. PloSOne. 2013; 8(12):e82508.
17. Baldwin CL, Goenka R. Host immune responses to the intracellular bacteria Brucella: does the bacteriainstruct the host to facilitate chronic infection? Crit Rev Immunol. 2006; 26(5):407-42.
18. Franchi L, Park JH, Shaw MH, Marina-Garsia N, Chen G, Kim YG, et al. Intracellular NOD‐like receptors in innate immunity, infection and disease. Cell Microbiol. 2008; 10(1):1-8.
19. Radhakrishnan GK, Yu Q, Harms JS, Splitter GA. Brucella TIR domain-containing protein mimics properties of the Toll-like receptor adaptor protein TIRAP. J BiolChem. 2009; 284(15):9892-8.
20. Sengupta D, Koblansky A, Gaines J, Brown T, West AP, Zhang D, et al. Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter. MAL. J Immunol. 2010;184(2):956-64.
21. Gorvel JP. Brucella: a Mr “Hide” converted into Dr Jekyll. Microbes Infect. 2008; 10(9):1010-3.
22. Dorneles EM, Teixeira-Carvalho A, Araújo MS, Lima GK, Martins-Filho OA, Sriranganathan N, et al. T lymphocytes subsets and cytokine pattern induced by vaccination against bovine brucellosis employing S19 calfhood vaccination and adult RB51 revaccination. Vaccine. 2014; 32(46):6034-8.
23. Maria-PilarJdB, Dudal S, Dornand J, Lafont V, Loisel S, Liautard J, et al. Cellular bioterrorism: how Brucella corrupts macrophage physiology to promote invasion and proliferation. ClinImmunol. 2005; 114(3):227-38.
24. Feldman KE, Loriaux PM, Saito M, Luero I, Villaverde H, Siva T, et al. Ex vivo innate immune cytokine signature of enhanced risk of relapsing Brucellosis. PLoSNegl Trop Dis. 2013; 7(9):e2424.
25. Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, et al. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations, PLoS Med. 2007; 4(12):e317.
26. Vrioni G, Pappas G, Priavali E, Gartzonika C, Levidiotou S. An eternal microbe: Brucella DNA load persists for years after clinical cure. Clin Infect Dis. 2008; 46(12):e131-6.
27. Avila-Calderón ED, Lopez-Merino A, Sriranganathan N, Boyle SM, Contreras-Rodriguez A, et al. A history of the development of Brucella vaccines. Biomed Res Int. 2013;2013: 743509.
28. Edmonds MD, Cloeckaert A, Elzer PH. Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucellamelitensis and Brucellaovis. VetMicrobiol. 2002; 88(3):205-21.
29. Weinhold M, Eisenblätter M, Jasny E, Fehlings M, Finke A, Gayum H, et al. The attenuated Brucellaabortusstrain 19 invades, persists in, and activates human dendritic cells, and induces the secretion of IL-12p70 but not IL-23. PloSOne. 2013; 8(6): e65934.
30. Poester FP, Gonçalves VS, Paixao TA, Santos RL, Olsen SC, Schurig GG, et al. Efficacy of strain RB51 vaccine in heifers against experimental brucellosis. Vaccine. 2006; 24(25):5327-34.
31. Olsen SC, Stoffregen WS. Essential role of vaccines in brucellosis control and eradication programs for livestock.Expert Rev Vaccines. 2005; 4(6):915–28
32. Moriyón I, Grilló MJ, Monreal D, Grillo MG, Gonzalez D, Marin C, et al. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res. 2004; 35(1):1-38.
33. Bhattacharjee AK, Izadjoo MJ, Zollinger WD, Nikolich MP, Hoover DL. Comparison of protective efficacy of subcutaneous versus intranasal immunization of mice with a Brucellamelitensis lipopolysaccharide subunit vaccine. Infect Immun. 2006; 74(10):5820-5.
34. Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev. 2010; 34(3):379-94.
35. Arenas-GamboaAM, Ficht T, Kahl-McDonagh M, Rice-Ficht AC. The Brucellaabortus S19 ΔvjbR live vaccine candidate is safer than S19 and confers protection against wild-type challenge in BALB/c mice when delivered in a sustained-release vehicle. Infect Immun. 2009; 77(2):877-84.
36. Adone R, Muscillo M, La Rosa G, Francia M, Tarantino M. Antigenic, immunologic and genetic characterization of rough strains B. abortus RB51, B. melitensis B115, and B. melitensis B18. PloS One. 2011; 6(10):e24073.
37. Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present, and future. VetMicrobiol. 2002; 90(1):479-96.
38. Vemulapalli R, McQuiston JR, Schurig GG, Sriranganathan N, Halling SM, Boyle SM. Identification of an IS711 element interrupting the wboAgene of Brucellaabortusvaccine strain RB51 and a PCR assay to distinguish strain RB51 from other Brucellaspecies and strains. ClinDiagn Lab Immunol. 1999; 6(5):760-4.
39. Ashford DA, di Pietra J, Lingappa J, Woods C, Noll H, Neville B, et al. Adverse events in humans associated with accidental exposure to the livestock brucellosis vaccine RB51. Vaccine. 2004; 22(25):3435-9.
40. Banai M. Control of small ruminant brucellosis by use of Brucellamelitensis Rev. 1 vaccine: laboratory aspects and field observations. VetMicrobiol. 2002; 90(1):497-519.
41. McQuiston JR, Vemulapalli R, Inzana TJ, Schurig GG, Sriranganathan N, Fritzinger D, et al. Genetic characterization of a Tn5-disrupted glycosyltransferase gene homolog inBrucellaabortus and its effect on lipopolysaccharide composition and virulence. Infect Immun. 1999; 67(8):3830-5.
42. Crawford RM, Van De Verg L, Yuan L, Hadfield TL, Warren RL, Drazek ES, et al. Deletion of purE attenuates Brucellamelitensis infection in mice. Infect Immun. 1996; 64(6):2188-92.
43. Pasquevich KA, Samartino CG, Coria LM, Estein SM, Zwerdling A, Ibanez AE, et al. The protein moiety of Brucellaabortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J Immunol. 2010; 184(9):5200-12.
44. Bahador A, Esmaeili D, Mansoori N, Mahdavi M. Protection against Brucellaabortus 544 strain infection in BALB/c mice by subcutaneouse administration of multicomponent vaccine of rCagA conjugated with LPS plus CpG. J PureApplMicrobiol. 2013; 7(3):1809-19.
45. Oliveira S, Zhu Y, Splitter G. Recombinant L7/L12 ribosomal protein and gamma-irradiated Brucellaabortus induce a T-helper 1 subset response from murine CD4+ T cells. Immunol. 1994; 83(4):659-65.
46. Estein SM, Cassataro J, Vizcaíno N, Zigmunt MS, Cloeckaert A, Bowden RA. The recombinant Omp31 from Brucellamelitensis alone or associated with rough lipopolysaccharide induces protection against Brucellaovis infection in BALB/c mice. Microb Infect. 2003; 5(2):85-93.
47. Amano A, Takeuchi H, Furuta N. Outer membrane vesicles function as offensive weapons in host–parasite interactions. Microb Infect. 2010; 12(11):791-8.
48. Avila-Calderón ED, Lopez-Merino A, Jain N, Peralta H, Lopez-Villages EO, Sriranganathan N, et al. Characterization of outer membrane vesicles from Brucellamelitensis and protection induced in mice. ClinDevImmunol. 2011; 2012:1-13.
49. Commander NJ, Spencer SA, Wren BW, MacMillan AP. The identification of two protective DNA vaccines from a panel of five plasmid constructs encoding Brucellamelitensis 16M genes. Vaccine. 2007; 25(1):43-54.
50. Kaushik P, Singh DK, Kumar SV, Tiwari AK, Shukla G, Dayal S, et al. Protection of mice againstBrucellaabortus 544 challenge by vaccination with recombinant OMP28 adjuvanted with CpG oligonucleotides. Vet Res Commun. 2010; 34(2):119-32.
51. Cassataro J, Estein SM, Pasquevich KA, Velikovsky CA, de la Barrera S, Bowden R, et al. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucellamelitensis infection. Infect Immun. 2005; 73(12):8079-88.
52. Pasquevich KA, Estein SM, Samartino CG, Coria LM, Zwerdling A, Ibanez AE, et al. Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucellaabortus infection. Infect Immun. 2009; 77(1):436-45.
53. Yang Y, Yin J, Guo D, Lang X, Wang X. Immunization of mice with recombinant S‐adenosyl‐l‐homocysteine hydrolase protein confers protection againstBrucellamelitensis infection. FEMS Immunol Med Microbiol. 2011; 61(2):159-67.
54. Delpino MV, Estein SM, Fossati CA, Baldi PC, Cassataro J. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucellaabortus infection in BALB/c mice. Vaccine. 2007; 25(37):6721-9.
55. Muñoz-Montesino C, Andrews E, Rivers R, Gonzalez-Smith A, Moraga-Cid G, Folch H, et al. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucellaabortus induces SOD-specific CD4+ and CD8+ T cells. Infect Immun. 2004; 72(4):2081-7.
56. Chaudhuri P, Singha H, Goswami TK, Jana C, Shukla G. DNA prime and protein boost immunization with combined SOD–L7/L12 antigen confers protection to mice against Brucellaabortus 544 Challenge. AdvAnimVet Sci. 2013;1(5):143 -147.
57. Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, Estein S, Bowden RA, et al. A DNA vaccine encoding lumazine synthase from Brucellaabortus induces protective immunity in BALB/c mice. Infect Immun. 2002; 70(5):2507-11.
58. Gupta V, Radhakrishnan G, Harms J, Splitter G. Invasive Escherichia coli vaccines expressing Brucellamelitensis outer membrane proteins 31 or 16 or periplasmic protein BP26 confer protection in mice challenged with B. melitensis. Vaccine. 2012; 30(27):4017-22.
59. Ghasemi A, Salari MH, Zarnani AH, Pourmand MR, Ahmadi H, Shirazi MH, et al. Immunogenicity assessment of Brucellamelitensis HSP and TF proteins by immunized rabbit serum. Iran J Allergy Asthma Immunol. 2013; 12(2):192-4.
60. Singha H, Mallick AI, Jana C, Fatima N, Owais M, Chaudhuri P. Co-immunization with interlukin-18 enhances the protective efficacy of liposomes encapsulated recombinant Cu–Zn superoxide dismutase protein against Brucellaabortus. Vaccine. 2011; 29(29):4720-7.
61. Chang M-h, Glynn MK, Groseclose SL. Endemic, notifiable bioterrorism-related diseases, United States, 1992–1999. Emerg Infect Dis. 2003; 9(5):556-64.
62. Da Costa Martins R, Irache JM, Blasco JM, Gamgzo C. Evaluation of particulate acellular vaccines against Brucellaovis infection in rams. Vaccine. 2010; 28(17):3038-46.
63. Al-Mariri A, Mahmoud NH, Hammoud R. Efficacy evaluation of live Escherichia coli expression Brucella P39 protein combined with CpGoligodeoxynucleotides vaccine against Brucellamelitensis 16M, in BALB/c mice. Biol. 2012; 40(2):140-5.
64. Grilló MJ, Manterola L, De Miguel MJ, Munoz PM, Blasco JM, Moriyon I, et al. Increases of efficacy as vaccine against Brucellaabortus infection in mice by simultaneous inoculation with avirulent smooth bvrS/ bvrR and rough wbkA mutants. Vaccine. 2006; 24(15):2910-6.