Antibiotic Resistance Pattern and Evaluation of blaOXA-10, blaPER-1, blaVEB, blaSHV Genes in Clinical Isolates of Pseudomonas aeruginosa Isolated from Hospital in South of Iran in 2014-2015

Authors
1 Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
2 Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
Abstract
Background: Pseudomonas aeruginosa is one of the main causes of nosocomial infections with a mortality rate up to 40-50%. Resistance to antibiotics is a global challenge in the treatment of infections caused by this bacterium. The Class A beta-lactamases genes, including blaSHV, blaPER, blaVEB, are the most common causes of resistance in this microorganism. This study was conducted to determine antibiotic resistance pattern and the presence of blaper, blaveb, blashv and blaoxa-10 genes in clinical isolates of P. aeruginosa isolated from patients in a hospital in Bandar Abbas.
Materials and Methods: This cross-sectional study was conducted on 72 P. aeruginosa clinical isolates. Antibiotic susceptibility testing was performed by disk diffusion method according to the clinical Laboratory Standard Institute. MIC (Minimum inhibitory concentration) of ceftazidime was performed by E-Test. Polymerase chain reaction (PCR) was performed to identify blashv, blaveb-1, blaoxa-10, and blaper-1 genes.
Results: Most of the isolates were detected from intensive care unit and urine samples. The highest resistance rate which was observed to sulfamethoxazole and ceftazidime, were 68 (94.44%) and 44 (61.11%), respectively. 27.8% of these isolates were multidrug resistance. Among 44 ceftazidime resistance isolates, 15 isolates (34%) showed MIC ≥32 µg.ml in the E- test. The prevalence rates of genes were 4.16, 12.5, 8.33, and 1.38% for blaOxa-10, blaShv, blaVeb-1, and blaPer-1 genes, respectively.
Conclusion: The ceftazidime resistance rate and the prevalence rate of resistance genes in the present study were lower than other Iranian studies. However, isolation of these genes is alarming that excessive use of antibiotics can lead to over expression of resistance genes and bacterial efflux pumps and the emergence of MDR phenotypes.

Keywords


  1. Poirel L, Mammeri H, Nordmann P. TEM-121, a novel complex mutant of TEM-type beta-lactamase from Enterobacter aerogenes. Antimicrob Agents Chemother. 2004; 48(12): 4528-31.

  2. Kollef MH, Chastre J, Fagon J-Y, François B, Niederman MS, Rello J, et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med. 2014; 42(10): 2178-87.

  3. Schurek KN, Breidenstein EB, Hancock RE. Pseudomonas aeruginosa: a persistent pathogen in cystic fibrosis and hospital-associated infections.  Antibiotic Discovery and Development. USA: Springer publishing; 2012; 679-715.

  4. Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, et al. Hospital costs of nosocomial multidrug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res. 2012; 12: 122.

  5. Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998; 27(Supplement 1): S93-9.

  6. Nakhjavani A. Prevalence of extended spectrum beta lactamases among strains of Pseudomonas aeruginosa isolated from burn patients. Tehran Univ Med J. 2008; 66(5):333-7.

  7. Alikhani MY, Tabar ZK, Mihani F, Kalantar E, Karami P, Sadeghi M, et al. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur J Microbiol . 2014;7(1): e8888

  8. Gniadkowski M. Evolution and epidemiology of extended‐spectrum β‐lactamases (ESBLs) and ESBL‐producing microorganisms. Clin Microbiol Infect. 2001; 7(11): 597-608.

  9. Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol. 2012; 12(5): 883-93.

  10. Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with Class A beta-lactamases. Antimicrob Agents Chemother. 1994; 38(1):104-14

  11. Fazeli H, Bafghi MF, Faghri J, Akbari R. Molecular study of PER and VEB genes is multidrug resistant Pseudomonas aeroginosa isolated. J Kerman Univ Med Sci. 2012; 19(4): 345-53.

  12. Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol. 1993; 175(22): 7363-72.

  13. Moniri R, Mosayebi Z, Movahedian A. Increasing trend of antimicrobial drug-resistance in Pseudomonas aeruginosa causing septicemia. Iran J Public Health. 2006; 35(1): 58-62.

  14. Clinical and Laboratory Standard Institute: Performance standards for antimicrobial susceptibility testing, Seventeenth informational supplement. M100-S25,January 2015.

  15. Andriamanantena TS, Ratsima E, Rakotonirina HC, Randrianirina F, Ramparany L, Carod J-F, et al. Dissemination of multidrug resistant Acinetobacter baumannii in various hospitals of Antananarivo Madagascar. Ann Clin Microbiol Antimicrob. 2010; 9(1): 17.

  16. Yüce A, Yapar N, Eren KO. [Evaluation of antibiotic resistance patterns of Pseudomonas aeruginosa and Acinetobacter spp. strains isolated from intensive care patients between 2000-2002 and 2003-2006 periods in Dokuz Eylul University Hospital, Izmir]. Mikrobiyol Bul. 2009; 43(2): 195-202.

  17. Chayakulkeeree M, Junsriwong P, Keerasuntonpong A, Tribuddharat C, Thamlikitkul V. Epidemiology of extended-spectrum beta-lactamase producing gram-negative bacilli at Siriraj Hospital, Thailand, 2003. Southeast Asian J Tropical Med Public Health. 2005; 36(6):1503-9.

  18. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Exp Rev Pharmacoecon Outcomes Res. 2010; 10(4): 441-51.

  19. Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2010; 36(1): 70-4.

  20. Sader HS, Fritsche TR, Jones RN. Potency and spectrum trends for cefepime tested against 65746 clinical bacterial isolates collected in North American medical centers: results from the SENTRY Antimicrobial Surveillance Program (1998–2003). Diagn Microbiol Infectious Dis. 2005; 52(3): 265-73.

  21. Yoo J, Sohn ES, Chung GT, Lee EH, Lee KR, Park YK, et al. Five-year report of national surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolated from non-tertiary care hospitals in Korea (2002–2006). Diagn Microbiol Infect Dis. 2008; 60(3): 291-4.

  22. Imani Foolad A, Rostami Z, Shapouri R. Antimicrobial resistance and ESBL prevalence in Pseudomonas aeruginosa strains isolated from clinical specimen by phenotypic and genotypic methods. J Ardabil Univ Med Sci. 2010; 10(3): 189-98.

  23. Kianpour F, Havaei SA, Hosseini MM. Evaluation of Pseudomonas Aeroginosa Isolated from Cutaneous Infections and Determination of Drug Resistance Pattern in Patients of Alzahra Hospital in Esfahan. J Isfahan Med Sch. 2010; 28(110): 503-9.

  24. Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo β-lactamase production in ampC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol. 2014;7(9): e16436.

  25. Savaş L, Duran N, Savaş N, Önlen Y, OCAK S. The prevalence and resistance patterns of Pseudomonas aeruginosa in intensive care units in a university hospital. Turk J Med Sci. 2005; 35(5): 317-22.

  26. Chanawong A, M'Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother. 2001; 48(6): 839-52.

  27. Endimiani A, Luzzaro F, Pini B, Amicosante G, Rossolini GM, Toniolo AQ. Pseudomonas aeruginosa bloodstream infections: risk factors and treatment outcome related to expression of the PER-1 extended-spectrum beta-lactamase. BMC Infect Dis. 2006; 6(1): 52.

  28. Shahcheraghi F, Nikbin V-S, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microb Drug Resist. 2009; 15(1): 37-9.

  29. Vahaboglu H, Oztürk R, Aygün G, Coşkunkan F, Yaman A, Kaygusuz A, et al. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother. 1997; 41(10): 2265-9.

  30. Kolayli F, Gacar G, Karadenizli A, Sanic A, Vahaboglu H. PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett. 2005; 249(2): 241-5.

  31. Toupkanlou SP, Peerayeh SN, Mahabadi RP. Class A and D extended-spectrum β-lactamases in imipenem resistant Pseudomonas aeruginosa isolated from burn patients in Iran. Jundishapur J Microbiol. 2015; 8(8): e18352.

  32. Kownani M, Baserisalehi M, Bahador N. Frequency of Extended Spectrum β-Lactamase Genes in Pseudomonas Aerugionsa Isolates from Shiraz Hospital, Iran. Journal of Isfahan Medical School. 2013;31(243): 1007-1017.

  33. Caccamo M, Perilli M, Celenza G, Bonfiglio G, Tempera G, Amicosante G. Occurrence of extended spectrum β-lactamases among isolates of Enterobacteriaceae from urinary tract infections in southern Italy. Microb Drug Resist. 2006; 12(4): 257-64.

  34. Danel F, Hall LM, Livermore DM. Laboratory mutants of OXA-10 β-lactamase giving ceftazidime resistance in Pseudomonas aeruginosa. J Antimicrob Chemother. 1999; 43(3): 339-44.

  35. Howard C, Van Daal A, Kelly G, Schooneveldt J, Nimmo G, Giffard PM. Identification and minisequencing-based discrimination of SHV β-lactamases in nosocomial infection-associated Klebsiella pneumoniae in Brisbane, Australia. Antimicrob Agents Chemother. 2002; 46(3): 659-64.

  36. Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel Class A extended-spectrum β-lactamase, and the Class 1 integron In52 from Klebsiella pneumoniae.  Antimicrob Agents Chemother. 2000; 44(3): 622-32.