Keywords
1. Ryan KJ, Ray CG. Medical microbiology: An introduction to infectious diseases. Mcgraw-Hill; 2004. | ||||
2. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998; 11(4):589-603. | ||||
3. Sanchez UM, Bello TH, Dominguez YM, Mella MS, Zemelman ZR, Gonzalez RG. Transference of extended-spectrum beta-lactamases from nosocomial strains of Klebsiella pneumoniae to other species of Enterobacteriaceae. Rev Med Chil.2006; 134(4):415-20. | ||||
4. Ogawa W, Li DW, Yu P, Begum A, Mizushima T, Kuroda T, et al. Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull. 2005; 28(8):1505-8. https://doi.org/10.1248/bpb.28.1505 | ||||
5. Crawford JT. Genotyping in contact investigations: A CDC perspective. Int J Tuberc Lung Dis. 2003; 7(12): S453-7. | ||||
6. Lessig R, Zoledziewska M, Fahr K, Kostrzewa M, Dobosz T, Kleeman WJ. Y-SNP genotyping: A new approach in forensic analysis. Forensic Sci Int. 2005; 154(2): 128–36. https://doi.org/10.1016/j.forsciint.2004.09.129 | ||||
7. Kok J, Buist G, Zomer AL, Van Hijum SA, Kuipers OP. Comparative and functional genomics of lactococci. FEMS Microbiol Rev. 2005; 29(3): 411–33. https://doi.org/10.1016/j.fmrre.2005.04.004 | ||||
8. Schwartz DC, Cantor CA. Seperation of yeast chromosome-sized DNA by pulsed - field gel elechtrophoresis. Cell. 1984; 37(1): 67-75. https://doi.org/10.1016/0092-8674(84)90301-5 | ||||
9. Ranjbar R, Karami A, Farshad SH, Giammanco GM, Mammina C. Typing methods used in the molecular epidemiology of microbial pathogens: A how-to guide. New Microbiol. 2014; 37(1): 1-15. | ||||
10. Hiett KL, Seal Bs. Use of repetitive element palindromic PCR (rep-PCR) for the epidemiologic discrimination of food borne pathogens. Methods Mol biol. 2009; 551: 49-58. | ||||
11. Barus T, Hanjaya I, Sadeli J, LAY BW, Suwanto A, Yulandi A. Genetic diversity of Klebsiella spp. isolated from tempe based on enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). Hayati J Biosci. 2013; 20 (4):171-6. https://doi.org/10.4308/hjb.20.4.171 | ||||
12. Ewing WH. Edward and Ewing`s Identification of Enterobacteriaceae. 4th ed. New York: Elseviers Science Publishing Co.; 1986: 169 – 81. | ||||
13. Clinical and Laboratory Standard Institute. M07-A9: 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne Pa; 2012. | ||||
14. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991; 19(24): 6823 – 31. https://doi.org/10.1093/nar/19.24.6823 | ||||
15. Duggan JM, Oldfield GS, Ghosh HK. Septicemia as a hospital hazard. J Hosp Infect. 1985; 6(4); 406-12. https://doi.org/10.1016/0195-6701(85)90057-X | ||||
16. Henshke-Bar-Meir R, Yinnon AM, Rudensky B, Attias D, Schlesinger Y, Raveh D. Assessment of the clinical significance of production of extended-spectrum beta-lactamases (ESBL) by Enterobacteriaceae. Infection. 2006; 34(2): 66-74. https://doi.org/10.1007/s15010-006-4114-z | ||||
17. Cabral AB, Melo RD, Maciel MA, Lopes AC. Multidrug resistance genes, including blaKPC and blaCTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop. 2012; 45 (5): 572-8. https://doi.org/10.1590/S0037-86822012000500007 | ||||
18. Wei ZQ, Chen YG, Yu YS, Lu WX, Li LJ. Nosocomial spread of multi-resistant Klebsiella pneumoniae containing a plasmid encoding multiple beta-lactamases. J Med Microbiol. 2005; 54(9): 885–8. https://doi.org/10.1099/jmm.0.46151-0 | ||||
19. Perez-Morenoa MO, Centelles-Serranoa MJ, Cortell-Ortola M, Fort-Gallifa I, Ruizb J, Llovet-Lombartea MI, et al. Molecular epidemiology and resistance mechanisms involved in reduced susceptibility to amoxicillin/ clavulanic acid in Klebsiella pneumoniae isolates from a chronic care centre. Int J Antimicrobial Agents. 2011; 37(5): 462–6. https://doi.org/10.1016/j.ijantimicag.2010.12.010 | ||||
20. Peerayeh SN, Rostami E, Siadat SD, Derakhshan S. High rate of aminoglycoside resistance in CTX-M-15 producing Klebsiella pneumoniae isolates in Tehran, Iran. Lab Med. 2014; 45(3):231-7 https://doi.org/10.1309/LMDQQW246NYAHHAD | ||||
21. Ramazanzadeh R, Zamani S, Zamani S. Genetic diversity in clinical isolates of Escherichia coli by enterobacterial repetitive intergenic consensus (ERIC)-PCR technique in Sanandaj hospitals. Iran J Microbiol. 2013; 5(2):126-31. | ||||
22. Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol. 2016; 9(1): e30682. https://doi.org/10.5812/jjm.30682 | ||||
23. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Shyr JM, Wan JH, et al. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother. 2006; 50(5):1861-4. https://doi.org/10.1128/AAC.50.5.1861-1864.2006 | ||||
24. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003; 47(12):3724- 32. https://doi.org/10.1128/AAC.47.12.3724-3732.2003 | ||||
25. Lagha N, Abdelouahid DE, Hassaine H, Robin FE, Bonnet R. First characterization of CTXM- 15 and DHA-1-lactamases among clinical isolates of Klebsiella pneumoniae in Laghouat Hospital, Algeria. Afr J Microbiol Res. 2014; 8(11):1221-7. https://doi.org/10.5897/AJMR2013.6229 |