Molecular Typing of Klebsiella pneumoniae Isolates by Enterobacterial Repetitive Intergenic Consensus (ERIC)–PCR

Authors
1 Department of Microbiology, Dezful branch, Islamic Azad University, Dezful, IR Iran
2 Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
3 Department of Medical Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, IR Iran
4 Department of Medical laboratory Sciences, Faculty of Para Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Abstract
Background: Klebsiella pneumoniae is a Gram-negative bacterium and a part of the natural microflora of gastrointestinal tract in human body. K. pneumoniae has been known as one of the most common cause of nosocomial infections and multi-drug resistance pathogen. The aims of this study was to examine the detection of antimicrobial susceptibility and genetic relatedness among K. pneumoniae strains isolated from hospitals in Borujerd in western Iran using Enterobacterial Repetitive Intergenic Consensus (ERIC)–PCR technique.
Materials and Methods: A total of 100 K. pneumoniae isolates were collected from Borujerd hospitals from April to September 2015. After detection and confirmation of K. pneumoniae isolates by conventional laboratory methods and differential tests, antibiotic susceptibility was detected by disk diffusion method. Also, genetic relatedness of 34 selected MDR K. pneumoniae isolates were investigated by ERIC - PCR technique.
Results: Antibiotic susceptibility testing showed that among K. pneumoniae isolates, the highest antibiotic resistance was observed in ampicillin (91%) and the highest susceptibility was detected in imipenem (5.5%). More than 45% of isolates showed multi resistant phenotypes. Based on ERIC-PCR results, 31 different ERIC types were detected.
Conclusion: The results of this study indicate the increase of multi resistance K. pneumoniae in hospitals under study. The results of ERIC PCR showed high genetic diversity among K. pneumoniae strains, which indicated the poly clonal distribution of K. pneumoniae isolates in Borujerd hospitals.

Keywords
























































































































































1. Ryan KJ, Ray CG. Medical microbiology: An introduction to infectious diseases. Mcgraw-Hill; 2004.
 
2. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998; 11(4):589-603.
 
3. Sanchez UM, Bello TH, Dominguez YM, Mella MS, Zemelman ZR, Gonzalez RG. Transference of extended-spectrum beta-lactamases from nosocomial strains of Klebsiella pneumoniae to other species of Enterobacteriaceae. Rev Med Chil.2006; 134(4):415-20.
 
4. Ogawa W, Li DW, Yu P, Begum A, Mizushima T, Kuroda T, et al. Multidrug resistance in Klebsiella pneumoniae MGH78578 and cloning of genes responsible for the resistance. Biol Pharm Bull. 2005; 28(8):1505-8.
https://doi.org/10.1248/bpb.28.1505
 
5. Crawford JT. Genotyping in contact investigations: A CDC perspective. Int J Tuberc Lung Dis. 2003; 7(12): S453-7.
 
6. Lessig R, Zoledziewska M, Fahr K, Kostrzewa M, Dobosz T, Kleeman WJ. Y-SNP genotyping: A new approach in forensic analysis. Forensic Sci Int. 2005; 154(2): 128–36.
https://doi.org/10.1016/j.forsciint.2004.09.129
 
7. Kok J, Buist G, Zomer AL, Van Hijum SA, Kuipers OP. Comparative and functional genomics of lactococci. FEMS Microbiol Rev. 2005; 29(3): 411–33.
https://doi.org/10.1016/j.fmrre.2005.04.004
 
8. Schwartz DC, Cantor CA. Seperation of yeast chromosome-sized DNA by pulsed - field gel elechtrophoresis. Cell. 1984; 37(1): 67-75.
https://doi.org/10.1016/0092-8674(84)90301-5
 
9. Ranjbar R, Karami A, Farshad SH, Giammanco GM, Mammina C. Typing methods used in the molecular epidemiology of microbial pathogens: A how-to guide. New Microbiol. 2014; 37(1): 1-15.
 

10. Hiett KL, Seal Bs. Use of repetitive element palindromic PCR (rep-PCR) for the epidemiologic discrimination of food borne pathogens. Methods Mol biol. 2009; 551: 49-58.
 
11. Barus T, Hanjaya I, Sadeli J, LAY BW, Suwanto A, Yulandi A. Genetic diversity of Klebsiella spp. isolated from tempe based on enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). Hayati J Biosci. 2013; 20 (4):171-6.
https://doi.org/10.4308/hjb.20.4.171
 
12. Ewing WH. Edward and Ewing`s Identification of Enterobacteriaceae. 4th ed. New York: Elseviers Science Publishing Co.; 1986: 169 – 81.
 
13. Clinical and Laboratory Standard Institute. M07-A9: 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne Pa; 2012.
 
14. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991; 19(24): 6823 – 31.
https://doi.org/10.1093/nar/19.24.6823
 
15. Duggan JM, Oldfield GS, Ghosh HK. Septicemia as a hospital hazard. J Hosp Infect. 1985; 6(4); 406-12.
https://doi.org/10.1016/0195-6701(85)90057-X
 
16. Henshke-Bar-Meir R, Yinnon AM, Rudensky B, Attias D, Schlesinger Y, Raveh D. Assessment of the clinical significance of production of extended-spectrum beta-lactamases (ESBL) by Enterobacteriaceae. Infection. 2006; 34(2): 66-74.
https://doi.org/10.1007/s15010-006-4114-z
 
17. Cabral AB, Melo RD, Maciel MA, Lopes AC. Multidrug resistance genes, including blaKPC and blaCTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop. 2012; 45 (5): 572-8.
https://doi.org/10.1590/S0037-86822012000500007
 
18. Wei ZQ, Chen YG, Yu YS, Lu WX, Li LJ. Nosocomial spread of multi-resistant Klebsiella pneumoniae containing a plasmid encoding multiple beta-lactamases. J Med Microbiol. 2005; 54(9): 885–8.
https://doi.org/10.1099/jmm.0.46151-0
 
19. Perez-Morenoa MO, Centelles-Serranoa MJ, Cortell-Ortola M, Fort-Gallifa I, Ruizb J, Llovet-Lombartea MI, et al. Molecular epidemiology and resistance mechanisms involved in reduced susceptibility to amoxicillin/ clavulanic acid in Klebsiella pneumoniae isolates from a chronic care centre. Int J Antimicrobial Agents. 2011; 37(5): 462–6.
https://doi.org/10.1016/j.ijantimicag.2010.12.010
 
20. Peerayeh SN, Rostami E, Siadat SD, Derakhshan S. High rate of aminoglycoside resistance in CTX-M-15 producing Klebsiella pneumoniae isolates in Tehran, Iran. Lab Med. 2014; 45(3):231-7
https://doi.org/10.1309/LMDQQW246NYAHHAD
 
21. Ramazanzadeh R, Zamani S, Zamani S. Genetic diversity in clinical isolates of Escherichia coli by enterobacterial repetitive intergenic consensus (ERIC)-PCR technique in Sanandaj hospitals. Iran J Microbiol. 2013; 5(2):126-31.
 
22. Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, et al. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol. 2016; 9(1): e30682.
https://doi.org/10.5812/jjm.30682
 
23. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Shyr JM, Wan JH, et al. Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother. 2006; 50(5):1861-4.
https://doi.org/10.1128/AAC.50.5.1861-1864.2006
 
24. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother. 2003; 47(12):3724- 32.
https://doi.org/10.1128/AAC.47.12.3724-3732.2003
 
25. Lagha N, Abdelouahid DE, Hassaine H, Robin FE, Bonnet R. First characterization of CTXM- 15 and DHA-1-lactamases among clinical isolates of Klebsiella pneumoniae in Laghouat Hospital, Algeria. Afr J Microbiol Res. 2014; 8(11):1221-7.
https://doi.org/10.5897/AJMR2013.6229