Antibacterial Activity of Dill (Anethum graveolens) Essential Oil and Antibiofilm Activity of Cumin (Cuminum cyminum) Alcoholic Extract

Authors
1 Liver and Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, IR Iran
2 Department of Medical laboratory Sciences, School of Para medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
3 Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, IR Iran
Abstract
Background: Emergence of drug-resistant bacteria has highlighted the need to identify new and more efficient antibacterial agents. The aims of this study were to evaluate the antibacterial activity of dill (Anethum graveolens) seeds essential oil and to investigate the effect of cumin (Cuminum cyminum) seeds alcoholic extract on biofilm formation ability of Klebsiella pneumoniae.
Materials and methods: This experimental study was carried out at the Faculty of Medicine of Kurdistan University of Medical Sciences in 2014. Activity of dill seeds essential oil was evaluated based on the inhibition zone diameter and minimum inhibitory concentration (MIC) against some important pathogenic bacteria including: Vibrio cholerae, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Furthermore, the effect of sub-inhibitory concentrations of cumin seeds alcoholic extract was evaluated on biofilm formation ability of K. pneumoniae. The biofilms were formed on semi-glass lamellas and observed by a scanning electron microscope.
Results: Dill essential oil showed a good to moderate activity against the tested strains. The highest antibacterial activity was observed against S. aureus (inhibition zone of 15 mm and MIC of 0.62 mg.mL-1) and V. cholerae (inhibition zone of 14 mm and MIC of 0.7 mg..mL-1). The cumin alcoholic extract had no effect on biofilm formation ability of K. pneumoniae.
Conclusion: The results of this study showed the presence of antimicrobial compounds in dill extract. The cumin alcoholic extract was not able to inhibit biofilm formation ability of K. pneumoniae. Because of the medicinal plants properties, it is valuable to search for promising herbs and novel chemical compounds.

Keywords














































































































































































































1. Pesavento G, Ducci B, Comodo N, Nostro AL. Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: A research for methicillin resistant Staphylococcus aureus (MRSA). Food Control. 2007; 18(3):196-200.
https://doi.org/10.1016/j.foodcont.2005.09.013
 
2. White DG, Zhao S, Sudler R, Ayers S, Friedman S, Chen S, et al. The isolation of antibiotic-resistant Salmonella from retail ground meats. New Engl J Med. 2001; 345(16):1147-54.
https://doi.org/10.1056/NEJMoa010315
 
3. Kiessling CR, Cutting JH, Loftis M, Kiessling WM, Datta AR, Sofos JN. Antimicrobial resistance of food-related Salmonella isolates, 1999–2000. J Food Prot. 2002; 65(4):603-8.
https://doi.org/10.4315/0362-028X-65.4.603
 
4. Souza ELd, Stamford TLM, Lima EdO, Trajano VN, Barbosa Filho JM. Antimicrobial effectiveness of spices: An approach for use in food conservation systems. Braz Arch Biol Technol. 2005; 48(4):549-58.
https://doi.org/10.1590/S1516-89132005000500007
 
5. Derakhshan S, Sattari M, Bigdeli M, Zarei-Eskikand N. Antibacterial activity of essential oils from Artemisia and Cumin plants against Staphylococcus aureus, Escherichia coli and Vibrio cholera. J Qazvin Med Sci. 2011; 1:6-14.
 
6. Lopez P, Sanchez C, Batlle R, Nerin C. Solid-and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. J Agric Food Chem. 2005; 53(17):6939-46.
https://doi.org/10.1021/jf050709v
 
7. Delaquis PJ, Stanich K, Girard B, Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander, and eucalyptus essential oils. Int J Food Microbiol. 2002; 74(1):101-9.
https://doi.org/10.1016/S0168-1605(01)00734-6
 
8. Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Damianova ST. Composition, quality control, and antimicrobial activity of the essential oil of long-time stored dill (Anethum graveolens L.) seeds from Bulgaria. J Agric Food Chem. 2003; 51(13):3854-7.
https://doi.org/10.1021/jf030004y
 
9. Derakhshan S, Sattari M, Bigdeli M. Effect of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int J Antimicrob Agents. 2008; 32(5):432-6.
https://doi.org/10.1016/j.ijantimicag.2008.05.009
 
10. de Carvalho CC, da Fonseca MM. Carvone: Why and how should one bother to produce this terpene. Food Chemi. 2006; 95(3):413-22.
https://doi.org/10.1016/j.foodchem.2005.01.003
 
11. Iacobellis NS, Lo Cantore P, Capasso F, Senatore F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem. 2005; 53(1):57-61.
https://doi.org/10.1021/jf0487351
 
12. De M, De A, Mukhopadhyay R, Banerjee A, Miro M. Antimicrobial activity of Cuminum cyminum L. 2003.
 
13. Boddicker JD, Anderson RA, Jagnow J, Clegg S. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun. 2006; 74(8):4590-7.
https://doi.org/10.1128/IAI.00129-06
 
14. Packiavathy IASV, Agilandeswari P, Musthafa KS, Pandian SK, Ravi AV. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res Int. 2012; 45(1):85-92.
https://doi.org/10.1016/j.foodres.2011.10.022
 
15. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007; 5(1):48-56.
https://doi.org/10.1038/nrmicro1557
 
16. Baydar H, Sağdiç O, Özkan G, Karadoğan T. Antibacterial activity and composition of essential oils from Origanum, Thymbra, and Satureja species with commercial importance in Turkey. Food Control. 2004; 15(3):169-72.
https://doi.org/10.1016/S0956-7135(03)00028-8
 
17. Beg AZ, Ahmad I. Effect of Plumbago zeylanica extract and certain curing agents on multidrug resistant bacteria of clinical origin. World J Microbiol Biotechnol. 2000; 16(8-9):841-4.
https://doi.org/10.1023/A:1008991724288
 
18. Perez C, Pauli M, Bazerque P. An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp. 1990;15(1):113-5.
 
19. Demirci F, Guven K, Demirci B, Dadandi M, Baser K. Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control. 2008; 19(12):1159-64.
https://doi.org/10.1016/j.foodcont.2008.01.001
 
20. Harzallah HJ, Kouidhi B, Flamini G, Bakhrouf A, Mahjoub T. Chemical composition, antimicrobial potential against cariogenic bacteria and cytotoxic activity of Tunisian Nigella sativa essential oil and thymoquinone. Food Chem. 2011;129(4):1469-74.
https://doi.org/10.1016/j.foodchem.2011.05.117
 
21. O'toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol Microbiol. 1998; 28(3):449-61.
https://doi.org/10.1046/j.1365-2958.1998.00797.x
 
22. Singh G, Kapoor I, Pandey S, Singh U, Singh R. Studies on essential oils: Part 10; antibacterial activity of volatile oils of some spices. Phytother Res. 2002; 16(7):680-2.
https://doi.org/10.1002/ptr.951
 
23. De M, Krishna De A, Banerjee A. Antimicrobial screening of some Indian spices. Phytother Res. 1999; 13(7):616-8.
https://doi.org/10.1002/(SICI)1099-1573(199911)13:73.0.CO;2-V
 
24. Sağdıç O, Kuşçu A, Özcan M, Özçelik S. Effects of Turkish spice extracts at various concentrations on the growth of Escherichia coli O157: H7. Food Microbiol. 2002;19(5):473-80.
https://doi.org/10.1006/fmic.2002.0494
 
25. Saǧdıç O, Özcan M. Antibacterial activity of Turkish spice hydrosols. Food Control. 2003; 14(3):141-3.
https://doi.org/10.1016/S0956-7135(02)00057-9
 
26. Gachkar L, Yadegari D, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem. 2007;102(3):898-904.
https://doi.org/10.1016/j.foodchem.2006.06.035
 
27. Wanner J, Bail S, Jirovetz L, Buchbauer G, Schmidt E, Gochev V, et al. Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Nat Prod commun. 2010; 5(9):1355-8.
 
28. Ganesh PS, Rai VR. Evaluation of Anti-bacterial and Anti-quorum sensing potential of essential Oils extracted by Supercritical CO2 method against Pseudomonas aeruginosa. J Essent Oil Bear Pl. 2015; 18(2):264-75.
https://doi.org/10.1080/0972060X.2015.1025295
 
29. Sahly H, Podschun R, Oelschlaeger TA, Greiwe M, Parolis H, Hasty D, et al. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect Immun. 2000; 68(12):6744-9.
https://doi.org/10.1128/IAI.68.12.6744-6749.2000
 
30. Jagnow J, Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix-and collagen-coated surfaces. Microbiology. 2003; 149(9):2397-405.
https://doi.org/10.1099/mic.0.26434-0
 
31. Donlan RM. Biofilm formation: A clinically relevant microbiological process. Clin Infect Dis. 2001; 33(8):1387-92.
https://doi.org/10.1086/322972
 
32. Nanasombat S, Wimuttigosol P. Antimicrobial and antioxidant activity of spice essential oils. Food Sci Biotechnol. 2011; 20(1):45-53.
https://doi.org/10.1007/s10068-011-0007-8
 
33. Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int J Food Microbiol. 2004; 94(3):223-53.
https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
 
34. Sikkema J, De Bont J, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev. 1995; 59(2):201-22.