Risk Factors Associated with ESBL and CPE Acquisition among ‎Pediatrics: A Systematic Review

Document Type : Original Research

Authors
1 Microbiology Department, … Faculty, Fasa University of Medical Sciences, Fasa, Iran
2 Microbiology Department, Medicine Faculty, AJA University of Medical Sciences, Tehran, ‎Iran
3 Bacteriology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract
Aims: Infections by extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae (CPE) are increasing problems in pediatrics and are usually associated with higher hospital costs and mortality rates. The aims of this study were the statistical investigation of the worldwide prevalence and risk factors of ESBL and CPE family members among pediatric population.

Instruments and Methods: From October 1, 1995 to July 27, 2017, some keywords including “ESBLs”, “carbapenemase”, “pediatrics”, “children”, and “risk factor” were searched in the searching databases such as Google Scholar, Embase, Scopus, PubMed, and Web of Science among original research articles. The univariate and multivariate analysis of the collected data was performed by Graph Pad Prism 6.1 software.

Findings: The mean percentage of ESBL production was 20.23±22.31 and the mean percentage of CPE was 1.81±2.77. E. coli (n=991) and K. pneumonia (n=627) were the predominant ESBL-producers. Nephrology (n=5005) and NICU (n=1805) were predominant hospital wards. ESBL-PE had significantly higher prevalence in the infants unit (OR=0.9832, 95% CI=12.271-19.519; p<0.001). Moreover, ICU ward was a significant and independent risk factor for CPE acquisition (OR=0.849, 95% CI=2.211-5.415; p=0.0035). ESBL-PE and CPE were significantly isolated from blood samples (OR=0.9276, 95% CI=1.508-2.433, p<0.0001) and fecal specimens (OR=0.968, 95% CI=2.829-5.133, p<0.0001), respectively.

Conclusion: Most of risk factors between ESBL-PE and CPE are similar including previous hospitalization and prolonged use of antibiotics, cephalosporins, and previous colonization. Other possible potential risk factors that should be considered include presence of catheters and travel history. Detection of risk factors provides useful information for formulation of infection control policy.

Keywords

Subjects


Meyer KS, Urban C, Eagan JA, Berger BJ, Rahal JJ. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993;119(5):353-8.
Salehi M, Ghasemian A, Shokouhi Mostafavi SK, Nojoomi F, Ashiani D, Rajabi Vardanjani H. The epidemiology of candida species isolated from urinary tract infections. Arch Clin Infect Dis. 2016;11(4):e37743.
Fernandes R, Amador P, Prudêncio C. β-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol. 2013;24(1):7-17.
Spagnolo AM, Orlando P, Panatto D, Perdelli F, Cristina ML. An overview of carbapenem-resistant Klebsiella pneumoniae: Epidemiology and control measures. Rev Med Microbiol. 2014;25(1):7-14.
Ghasemian A, Salimian Rizi K, Rajabi Vardanjani H, Nojoomi F. Prevalence of clinically isolated metallo-beta-lactamase-producing pseudomonas aeruginosa, coding genes, and possible risk factors in Iran. Iran J Pathol. 2018;13(1):1-9.
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis. 2008;197(8):1079-81.
Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol. 2008;29(11):996-1011.
Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241-4.
Nojoomi F, Ghasemian A. Effect of overgrowth or decrease in gut microbiota on health and disease. Arch Pediatr Infect Dis. 2016;4(2):e34558.
De Francesco AS, Tanih NF, Samie A, Guerrant RL, Bessong PO. Antibiotic resistance patterns and beta-lactamase identification in Escherichia coli isolated from young children in rural Limpopo province, South Africa: The MAL-ED cohort. S Afr Med J. 2017;107(3):205-14.
Queenan AM, Bush K. Carbapenemases: The versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440-58.
Diene SM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, pseudomonas and acinetobacter species. Clin Microbiol Infect. 2014;20(9):831-8.
Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2000;44(3):622-32.
Tacão M, Moura A, Correia A, Henriques I. Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water Res. 2014;48:100-7.
Lucet JC, Chevret S, Decré D, Vanjak D, Macrez A, Bédos JP, et al. Outbreak of multiply resistant Enterobacteriaceae in an intensive care unit: Epidemiology and risk factors for acquisition. Clin Infect Dis. 1996;22(3):430-6.
Alberer M, Schlenker N, Bauer M, Helfrich K, Mengele C, Löscher T, et al. Detection of gastrointestinal pathogens from stool samples on hemoccult cards by multiplex PCR. Can J Infect Dis Med Microbiol. 2017;2017:3472537.
Ben-Ami R, Schwaber MJ, Navon-Venezia S, Schwartz D, Giladi M, Chmelnitsky I, et al. Influx of extended-spectrum beta-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis. 2006;42(7):925-34.
Rodríguez-Baño J, López-Cerero L, Navarro MD, de Alba PD, Pascual A. Faecal carriage of extended-spectrum beta-lactamase-producing Escherichia coli: Prevalence, risk factors and molecular epidemiology. J Antimicrob Chemother. 2008;62(5):1142-9.
Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect. 2008;14(Suppl 1):144-53.
Zhao SY, Zhang J, Zhang YL, Wang YC, Xiao SZ, Gu FF, et al. Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China. Epidemiol Infect. 2016;144(4):695-702.
Doernberg SB, Winston LG. Risk factors for acquisition of extended-spectrum β-lactamase-producing Escherichia coli in an urban county hospital. Am J Infect Control. 2012;40(2):123-7.
Karanika S, Karantanos T, Arvanitis M, Grigoras C, Mylonakis E. Fecal colonization with extended-spectrum beta-lactamase–producing Enterobacteriaceae and risk factors among healthy individuals: A systematic review and metaanalysis. Clin Infect Dis. 2016;63(3):310-8.
Kennedy K, Collignon P. Colonisation with Escherichia coli resistant to “critically important” antibiotics: A high risk for international travellers. Eur J Clin Microbiol Infect Dis. 2010;29(12):1501-6.
Zheng B, Dai Y, Liu Y, Shi W, Dai E, Han Y, et al. Molecular epidemiology and risk factors of carbapenem-resistant Klebsiella pneumoniae infections in Eastern China. Front Microbiol. 2017;8:1061.
Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(2):133-64.
Denkel LA, Schwab F, Kola A, Leistner R, Garten L, Von Weizsäcker K, et al. The mother as most important risk factor for colonization of very low birth weight (VLBW) infants with extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E). J Antimicrob Chemother. 2014;69(8):2230-7.
Flokas ME, Detsis M, Alevizakos M, Mylonakis E. Prevalence of ESBL-producing Enterobacteriaceae in paediatric urinary tract infections: A systematic review and meta-analysis. J Infect. 2016;73(6):547-57.
Zaoutis TE, Goyal M, Chu JH, Coffin SE, Bell LM, Nachamkin I, et al. Risk factors for and outcomes of bloodstream infection caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in children. Pediatrics. 2005;115(4):942-9.
Logan LK, Meltzer LA, McAuley JB, Hayden MK, Beck T, Braykov NP, et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae infections in children: A two-center case-case-control study of risk factors and outcomes in Chicago, Illinois. J Pediatric Infect Dis Soc. 2014;3(4):312-9.
Colodner R, Rock W, Chazan B, Keller N, Guy N, Sakran W, et al. Risk factors for the development of extended-spectrum beta-lactamase-producing bacteria in nonhospitalized patients. Eur J Clin Microbiol Infect Dis. 2004;23(3):163-7.
Topaloglu R, Er I, Dogan BG, Bilginer Y, Ozaltin F, Besbas N, et al. Risk factors in community-acquired urinary tract infections caused by ESBL-producing bacteria in children. Pediatr Nephrol. 2010;25(5):919-25.
Søraas A, Sundsfjord A, Sandven I, Brunborg C, Jenum PA. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae - a case - control study in a low prevalence country. PloS One. 2013;8(7):e69581.
Lo WU, Ho PL, Chow KH, Lai EL, Yeung F, Chiu SS. Fecal carriage of CTXM type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. J Infect. 2010;60(4):286-92.
Ding H, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. The prevalence of plasmid-mediated AmpC beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China. Eur J Clin Microbiol Infect Dis. 2008;27(10):915-21.
Kantele A, Lääveri T, Mero S, Vilkman K, Pakkanen SH, Ollgren J, et al. Antimicrobials increase travelers' risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin Infect Dis. 2015;60(6):837-46.
Strysko JP, Mony V, Cleveland J, Siddiqui H, Homel P, Gagliardo C. International travel is a risk factor for extended-spectrum β-lactamase-producing Enterobacteriaceae acquisition in children: A case-case-control study in an urban U. S. hospital. Travel Med Infect Dis. 2016;14(6):568-71.
Rivard-Yazigi L, Zahar JR, Le Guillou S, Chalouhi C, Lecuyer H, Bureau C, et al. Risk factors associated with extended-spectrum β-lactamase-producing Enterobacteriaceae carriage at admission in an infant cohort at a tertiary teaching hospital in France. Am J Infect Control. 2013;41(9):844-5.
Hijazi SM, Fawzi MA, Ali FM, Abd El Galil KH. Multidrug-resistant ESBL-producing Enterobacteriaceae and associated risk factors in community infants in Lebanon. J Infect Dev Ctries. 2016;10(9):947-55.
Pessoa-Silva CL, Meurer Moreira B, Câmara Almeida V, Flannery B, Almeida Lins MC, Mello Sampaio JL, et al. Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit: Risk factors for infection and colonization. J Hosp Infect. 2003;53(3):198-206.
Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: Epidemiology and clinical outcome. Antimicrob Agents Chemother. 2002;46(5):1481-91.
Linkin DR, Fishman NO, Patel JB, Merrill JD, Lautenbach E. Risk factors for extended-spectrum beta-lactamase-producing Enterobacteriaceae in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2004;25(9):781-3.
Venezia RA, Scarano FJ, Preston KE, Steele LM, Root TP, Limberger R, et al. Molecular epidemiology of an SHV-5 extended-spectrum beta-lactamase in Enterobacteriaceae isolated from infants in a neonatal intensive care unit. Clin Infect Dis. 1995;21(4):915-23.
Pessoa-Silva CL, Toscano CM, Moreira BM, Santos AL, Frota AC, Solari CA, et al. Infection due to extended-spectrum beta-lactamase-producing Salmonella enterica subsp. enterica serotype infantis in a neonatal unit. J Pediatr. 2002;141(3):381-7.
Pragosa H, Marçal M, Gonçalves E, Martins F, Lopo-Tuna M. Multi-drug-resistant Enterobacteriaceae in a Portuguese neonatal intensive care unit. J Hosp Infecti. 2017;96(2):130-1.
Birgy A, Levy C, Bidet P, Thollot F, Derkx V, Béchet S, et al. ESBL-producing Escherichia coli ST131 versus non-ST131: Evolution and risk factors of carriage among French children in the community between 2010 and 2015. J Antimicrob Chemother. 2016;71(10):2949-56.
Isendahl J, Turlej-Rogacka A, Manjuba C, Rodrigues A, Giske CG, Nauclér P. Fecal carriage of ESBL-producing E. coli and K. pneumoniae in children in Guinea-Bissau: A hospital-based cross-sectional study. PloS One. 2012;7(12):e51981.
Fernández-Reyes M, Vicente D, Gomariz M, Esnal O, Landa J, Oñate E, et al. High rate of fecal carriage of extended-spectrum-β-lactamase-producing Escherichia coli in healthy children in Gipuzkoa, Northern Spain. Antimicrob Agents Chemother. 2014;58(3):1822-4.
César García C J, Amaya S, Briceño C W, Rincón C, Pinzón J. Risk factors for carbapenem-resistant bacterial infection or colonization: A case control study. Acta Colombiana de Cuidado Intensivo. 2017;17(1):29-35. [Spanish]
Karaaslan A, Soysal A, Altinkanat Gelmez G, Kepenekli Kadayifci E, Söyletir G, Bakir M. Molecular characterization and risk factors for carbapenem-resistant Gram-negative bacilli colonization in children: Emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J Hosp Infect. 2016;92(1):67-72.
Desta K, Woldeamanuel Y, Azazh A, Mohammod H, Desalegn D, Shimelis D, et al. High gastrointestinal colonization rate with extended-spectrum β-lactamase-producing Enterobacteriaceae in hospitalized patients: Emergence of carbapenemase-producing K. pneumoniae in Ethiopia. PloS One. 2016;11(8):e0161685.