Association between ESBLs Genes and Quinolone Resistance in Uropathogenic Escherichia coli Isolated from Patients with Urinary Tract Infection

Document Type : Original Research

Authors
1 Department of Microbiology, faculty of medicine, Iran University of medical science, Tehran, Iran
2 Department of microbiology, faculty of medicine, Iran university of medical science, Tehran, Iran
3 Department of Microbiology, faculty of medicine, Iran University of Medical Science, Tehran, Iran
4 Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
Abstract
Aims

Urinary tract infection (UTI) is one of the most common infections worldwide. The aim of this study was to investigate the association between ESBLs genes and quinolone resistance in Uropathogenic Escherichia coli isolated from patients with urinary tract infection .

Materials & Methods

A total of 150 E. coli isolates were collected from patients with urinary tract infection referring to Firouzgar Hospital in Tehran, Iran. Antimicrobial susceptibility of isolates were determined by disk diffusion method. Double-disk diffusion test was performed for phenotypic identification of extended-spectrum β-lactamase- (ESBL) producing isolates. PCR was used for the detection of ESBL-encoding genes in addition to quinolone (qnr) resistance genes.

Findings

There was a high resistance rate to most of the studied antimicrobial agents. Phenotypically, 75% of the isolates produced an ESBL enzyme and were resistant to different antimicrobial classes. In overall, 83% of the isolates carried ESBL genes, especially blaTEM and blaCTX-M . 75% were positive for the quinolone resistance genes including qnrA , qnrB ,qnrS and qepA. These results indicate the association between the presence of various ESBLs genes and quinolone resistance in uropathogenic E. coli.

Conclusion

Resistance patterns show the increased incidence of antibacterial resistance in E. coli. Results of the current study indicate the high prevalence of ESBL-producing isolates and quinolone resistance genes. Simultaneous presence of genes responsible for antibacterial resistance has made the treatment of UTI more challenging than ever before.

Keywords


1. Antunes L, Visca P, Towner KJJP, disease. Acinetobacter baumannii: evolution of a global pathogen. 2014;71(3):292-301.
2. Dunitz M. Urinary Tract Infection in the Female. Book reviewes. 2000:ISBN 1 85317 689 3.lllus. 324 pages.
3. Briales A, Rodríguez-Martínez J, Velasco C, de Alba PD, Rodriguez-Bano J, Martinez-Martinez L, et al. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac (6′)-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases in Spain. 2012;39(5):431-4.
4. Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual ÁJJoI, Chemotherapy. Plasmid-mediated quinolone resistance: an update. 2011;17(2):149-82.
5. Karah N, Poirel L, Bengtsson S, Sundqvist M, Kahlmeter G, Nordmann P, et al. Plasmid-mediated quinolone resistance determinants qnr and aac (6′)-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. 2010;66(4):425-31.
6. Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, et al. Plasmid-mediated quinolone resistance determinants qnr and aac (6′)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. 2008;61(5):1003-6.
7. Cattoir V, Poirel L, Rotimi V, Soussy C-J, Nordmann PJJoac. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. 2007;60(2):394-7.
8. Shams E, Firoozeh F, Moniri R, Zibaei MJJop. Prevalence of plasmid-mediated quinolone resistance genes among extended-spectrum β-Lactamase-producing Klebsiella pneumoniae human isolates in Iran. 2015;2015.
9. Raei F, Eftekhar F, Feizabadi MM. Prevalence of Quinolone Resistance Among Extended-Spectrum beta -Lactamase Producing Uropathogenic Klebsiella pneumoniae. Jundishapur J Microbiol. 2014;7(6):e10887.
10. Arsalane L, Zerouali K, Katfy K, Zouhair S. Molecular characterization of extended spectrum β-lactamase-producing Escherichia coli in a university hospital in Morocco, North Africa. African Journal of Urology. 2015;21(3):161-6.
11. Group B. Risks of extended-spectrum beta-lactamases. Drug and therapeutics bulletin. 2008;46(3):21.
12. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical infectious diseases. 2009;49(11):1749-55.
13. Klumpp DJ, Rycyk MT, Chen MC, Thumbikat P, Sengupta S, Schaeffer AJ. Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis. Infect Immun. 2006;74(9):5106-13.
14. Heydari Chaleshtori M, Tajbakhsh E, Arbab Soleymani NJPJ. Determination of phylogenic groups in uoropathogenic Esherichia coli in Shahrekord. 2016;21(2):93-8.
15. Lavilla S, Gonzalez-Lopez J, Sabate M, Garcia-Fernandez A, Larrosa M, Bartolome R, et al. Prevalence of qnr genes among extended-spectrum β-lactamase-producing enterobacterial isolates in Barcelona, Spain. Journal of Antimicrobial Chemotherapy. 2007;61(2):291-5.
16. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clinical microbiology reviews. 2009;22(4):664-89.
17. Cao X, Cavaco LM, Lv Y, Li Y, Zheng B, Wang P, et al. Molecular characterization and antimicrobial susceptibility testing of Escherichia coli isolates from patients with urinary tract infections in 20 Chinese hospitals. Journal of clinical microbiology. 2011;49(7):2496-501.
18. Colodner R, Kometiani I, Chazan B, Raz R. Risk factors for community-acquired urinary tract infection due to quinolone-resistant E. coli. Infection. 2008;36(1):41-5.
19. Molazade A, Shahi A, Najafipour S, Mobasheri F, Norouzi F, Abdollahi Kheirabadi S, et al. Antibiotic Resistance Pattern of Bacteria Causing Urinary Tract Infections in Children of Fasa During the Years 2012 and 2014. Journal of Fasa University of Medical Sciences/Majallah-i Danishgah-i Ulum-i Pizishki-i Fasa. 2015;4(4).
20. Fesharakinia A, Malekaneh M, Hooshyar H, Aval M, Gandomy-Sany F. The survey of bacterial etiology and their resistance to antibiotics of urinary tract infections in children of Birjand city. Journal of Birjand University of Medical Sciences. 2012;19(2):208-15.
21. Wintermans B, Reuland E, Wintermans R, Bergmans A, Kluytmans J. The cost‐effectiveness of ESBL detection: towards molecular detection methods? Clinical Microbiology and Infection. 2013;19(7):662-5.
22. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clinical microbiology reviews. 2005;18(4):657-86.
23. Randegger CC, Hächler H. Amino acid substitutions causing inhibitor resistance in TEM β-lactamases compromise the extended-spectrum phenotype in SHV extended-spectrum β-lactamases. Journal of Antimicrobial Chemotherapy. 2001;47(5):547-54.
24. Pérez-Llarena FJ, Kerff F, Abián O, Mallo S, Fernández MC, Galleni M, et al. Distant and new mutations in CTX-M-1 β-lactamase affect cefotaxime hydrolysis. Antimicrobial agents and chemotherapy. 2011;55(9):4361-8.
25. Paltansing S, Kraakman M, Ras J, Wessels E, Bernards A. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. Journal of Antimicrobial Chemotherapy. 2012;68(1):40-5.
26. Hashim RB, Husin S, Rahman MM. Detection of betalactamase producing bacterial genes and their clinical features. Pakistan Journal of Biological Sciences. 2011;14(1):41.
27. Pereira A, Santos A, Tacão M, Alves A, Henriques I, Correia A. Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal). Science of the Total Environment. 2013;461:65-71.
28. Sedighi I, Arabestani MR, Rahimbakhsh A, Karimitabar Z, Alikhani MY. Dissemination of Extended-Spectrum β-Lactamases and Quinolone Resistance Genes Among Clinical Isolates of Uropathogenic Escherichia coli in Children. Jundishapur journal of microbiology. 2015;8(7).
29. Mirzaee M, Owlia P, Mansouri S. Distribution of CTX-M β-lactamase genes among Escherichia coli strains isolated from patients in Iran. Laboratory Medicine. 2009;40(12):724-7.
30. Yamane K, Wachino J-i, Suzuki S, Kimura K, Shibata N, Kato H, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. 2007;51(9):3354-60.
31. Périchon B, Courvalin P, Galimand MJAa, chemotherapy. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. 2007;51(7):2464-9.
32. Hassan W, Hashim A, Domany RJIjomm. Plasmid mediated quinolone resistance determinants qnr, aac (6′)-Ib-cr, and qep in ESBL-producing Escherichia coli clinical isolates from Egypt. 2012;30(4):442.
33. Goudarzi M, Azad M, Seyedjavadi SSJS. Prevalence of plasmid-mediated quinolone resistance determinants and OqxAB efflux pumps among extended-spectrum-lactamase producing Klebsiella pneumoniae isolated from patients with nosocomial urinary tract infection in Tehran, Iran. 2015;2015.
34. Alheib O, Al Kayali R, Abajy MYJAoCID. Prevalence of plasmid-mediated quinolone resistance (PMQR) determinants among extended spectrum beta-lactamases (ESBL)-producing isolates of escherichia coli and klebsiella pneumoniae in Aleppo, Syria. 2015;10(3).
35. Bouchakour M, Zerouali K, Claude JDPG, Amarouch H, El Mdaghri N, Courvalin P, et al. Plasmid-mediated quinolone resistance in expanded spectrum beta lactamase producing enterobacteriaceae in Morocco. The Journal of Infection in Developing Countries. 2010;4(12):779-803.