A Review on Bacterial Respiratory Infections and Optimization of Their Identification

Document Type : Analytic Review

Authors
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Abstract
Background: The current narrative review aims to describe microbial agents causing pneumonia briefly. In addition, the ongoing review tries to introduce the diagnostic methods from biochemical to molecular tests used routinely and the promising molecular methods which will be used in near future.

Methods: PubMed was searched for all review and original articles related to the lung infection. Studies providing insights into clinical symptoms, microbiology, risk factors, and diagnosis were included.

Rasult & Conclusion: Untreated respiratory infections are one of the most common health care problems worldwide. We tried to provide a collective view of new aspects of bacteriology and diagnosis methodology of lung infection detection.

Keywords

Subjects


1. Gadsby N, McHugh M, Russell C, Mark H, Morris AC, Laurenson I, et al. Development of two real-time multiplex PCR assays for the detection and quantification of eight key bacterial pathogens in lower respiratory tract infections. Clinical microbiology and infection. 2015;21(8):788. e1-. e13.
2. Rami A, Kazemi-Lomedasht F, Pourshafie MR. Development of a Multiplex PCR for Detection of Common Causative Agent of Respiratory Tract Infections Include Streptococcus Pneumonia, Staphylococcus Aureus, KlebsiellaPneumonia and Mycobacterium Tuberculosis. Majallah-i pizishki-i Danishgah-i Ulum-i Pizishki va Khadamat-i Bihdashti-i Darmani-i Tabriz. 2014;36(4):56.
3. Malani PN. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. JAMA. 2010;304(18):2067-71.
4. FAO W. Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO Food Nutr Pap. 2006;85:2.
5. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. The Lancet. 2006;367(9524):1747-57.
6. Al-Marzooq F, Imad M, How S, Kuan Y. Development of multiplex real-time PCR for the rapid detection of five bacterial causes of community acquired pneumonia. Trop Biomed. 2011;28(3):545-56.
7. Woodhead M. Community-acquired pneumonia in Europe: causative pathogens and resistance patterns. European Respiratory Journal. 2002;20(36 suppl):20s-7s.
8. Vinderola G, Capellini B, Villarreal F, Suárez V, Quiberoni A, Reinheimer J. Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT-Food Science and Technology. 2008;41(9):1678-88.
9. Mustafa M, Al-Marzooq F, How S, Kuan Y, Ng T. The use of multiplex real-time PCR improves the detection of the bacterial etiology of community acquired pneumonia. Trop Biomed. 2011;28(3):531-44.
10. Strålin K, Bäckman A, Holmberg H, Fredlund H, Olcén P. Design of a multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae and Chlamydophila pneumoniae to be used on sputum samples. Apmis. 2005;113(2):99-111.
11. Kais M, Spindler C, Kalin M, Örtqvist Å, Giske CG. Quantitative detection of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in lower respiratory tract samples by real-time PCR. Diagnostic microbiology and infectious disease. 2006;55(3):169-78.
12. Mohd Ali M, Foo P, Hassan M, Maning N, Hussin A, Syed Ahmad Yunus S. Development and validation of TaqMan real-time PCR for the detection of Burkholderia pseudomallei isolates from Malaysia. Tropical Biomedicine. 2019;36(2):379-89.
13. Johansson N, Kalin M, Tiveljung-Lindell A, Giske CG, Hedlund J. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clinical Infectious Diseases. 2010;50(2):202-9.
14. Jenney AW, Clements A, Farn JL, Wijburg OL, McGlinchey A, Spelman DW, et al. Seroepidemiology of Klebsiella pneumoniae in an Australian Tertiary Hospital and its implications for vaccine development. Journal of clinical microbiology. 2006;44(1):102-7.
15. Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia–an observational pilot study in critical ill patients. Annals of clinical microbiology and antimicrobials. 2015;14(1):33.
16. Merchant M, Karnad D, Kanbur A. Incidence of nosocomial pneumonia in a medical intensive care unit and general medical ward patients in a public hospital in Bombay, India. Journal of Hospital Infection. 1998;39(2):143-8.
17. Ginevra C, Barranger C, Ros A, Mory O, Stephan J-L, Freymuth F, et al. Development and evaluation of Chlamylege, a new commercial test allowing simultaneous detection and identification of Legionella, Chlamydophila pneumoniae, and Mycoplasma pneumoniae in clinical respiratory specimens by multiplex PCR. Journal of clinical microbiology. 2005;43(7):3247-54.
18. Anbazhagan D, Mui WS, Mansor M, Yan GOS, Yusof MY, Sekaran SD. Development of conventional and real-time multiplex PCR assays for the detection of nosocomial pathogens. Brazilian Journal of Microbiology. 2011;42(2):448-58.
19. Hemmersbach-Miller M, Catania J, Saullo JL. Updates on Nocardia Skin and Soft Tissue Infections in Solid Organ Transplantation. Current infectious disease reports. 2019;21(8):27.
20. Dhakal D, Rayamajhi V, Mishra R, Sohng JK. Bioactive molecules from Nocardia: diversity, bioactivities and biosynthesis. Journal of industrial microbiology & biotechnology. 2019;46(3-4):385-407.
21. Antunes L, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathogens and disease. 2014;71(3):292-301.
22. Chevalier FL, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future microbiology. 2014;9(8):969-85.
23. Kim J, Kim Y, Yang C. Latest Comprehensive Knowledge of the Crosstalk between TLR Signaling and 1 Mycobacteria and the Antigens Driving the Process. Journal of microbiology and biotechnology. 2019.
24. Banuls A-L, Sanou A, Van Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. Journal of medical microbiology. 2015;64(11):1261-9.
25. Jawetz E, Melnick JL, Adelberg EA. Jawetz, Melnick & Adelberg's medical microbiology: Appleton & Lange; 1995.
26. Thisyakorn U, Tantawichien T, Thisyakorn C, Buchy P. Pertussis in the Association of Southeast Asian Nations: Epidemiology and Challenges. International Journal of Infectious Diseases. 2019.
27. Markey K, Asokanathan C, Feavers I. Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins. 2019;11(7):417.
28. Scanlon K, Skerry C, Carbonetti N. Association of pertussis toxin with severe pertussis disease. Toxins. 2019;11(7):373.
29. Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Current opinion in immunology. 2019;59:72-8.
30. Gorgojo J, Scharrig E, Gómez RM, Harvill ET, Rodríguez ME. Bordetella parapertussis circumvents neutrophil extracellular bactericidal mechanisms. PloS one. 2017;12(1):e0169936.
31. Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the respiratory tract and beyond. Clinical microbiology reviews. 2017;30(3):747-809.
32. Van Eldere J, Slack MP, Ladhani S, Cripps AW. Non-typeable Haemophilus influenzae, an under-recognised pathogen. The Lancet infectious diseases. 2014;14(12):1281-92.
33. SLACK MP, AZZOPARDI HJ, HARGREAVES RM, RAMSAY ME. Enhanced surveillance of invasive Haemophilus influenzae disease in England, 1990 to 1996: impact of conjugate vaccines. The Pediatric infectious disease journal. 1998;17(9):S204-S7.
34. Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathogens and disease. 2017;75(4):ftx042.
35. Lee C-R, Lee JH, Park KS, Jeon JH, Kim YB, Cha C-J, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Frontiers in cellular and infection microbiology. 2017;7:483.
36. Candan ED, Aksöz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochimica Polonica. 2015;62(4).
37. Hassan F. Molecular mechanisms of moraxella catarrhalis-induced otitis media. Current allergy and asthma reports. 2013;13(5):512-7.
38. Ren D, Pichichero ME. Vaccine targets against Moraxella catarrhalis. Expert opinion on therapeutic targets. 2016;20(1):19-33.
39. Blakeway LV, Tan A, Peak IR, Seib KL. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. Microbiology. 2017;163(10):1371-84.
40. Perez AC, Murphy TF. A Moraxella catarrhalis vaccine to protect against otitis media and exacerbations of COPD: an update on current progress and challenges. Human vaccines & immunotherapeutics. 2017;13(10):2322-31.
41. Antunes L, Visca P, Towner K. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 71: 292–301. 2014.
42. Lee C-R, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in cellular and infection microbiology. 2017;7:55.
43. Ghanekar K, McBride A, Dellagostin O, Thorne S, Mooney R, McFadden J. Stimulation of transposition of the Mycobacterium tuberculosis insertion sequence IS6110 by exposure to a microaerobic environment. Molecular microbiology. 1999;33(5):982-93.
44. Lee K, Yoon SS. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. 2017.
45. Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MG, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiology Reviews. 2017;41(5):698-722.
46. Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature reviews microbiology. 2017;15(11):675.
47. Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. International Journal of Medical Microbiology. 2018;308(6):607-24.
48. Lowy FD. Staphylococcus aureus infections. New England journal of medicine. 1998;339(8):520-32.
49. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, et al. Pneumococcal capsules and their types: past, present, and future. Clinical microbiology reviews. 2015;28(3):871-99.
50. Varghese R, Jayaraman R, Veeraraghavan B. Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. Journal of microbiological methods. 2017;141:48-54.
51. Isturiz R, Sings HL, Hilton B, Arguedas A, Reinert R-R, Jodar L. Streptococcus pneumoniae serotype 19A: worldwide epidemiology. Expert review of vaccines. 2017;16(10):1007-27.
52. Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS microbiology reviews. 2017;41(6):854-79.
53. Brouwer S, Barnett TC, Rivera‐Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS letters. 2016;590(21):3739-57.
54. Sitkiewicz I. How to become a killer, or is it all accidental? Virulence strategies in oral streptococci. Molecular oral microbiology. 2018;33(1):1-12.
55. Wilkening RV, Federle MJ. Evolutionary constraints shaping Streptococcus pyogenes–host interactions. Trends in microbiology. 2017;25(7):562-72.
56. Sumitomo T. Streptococcus pyogenes translocates across an epithelial barrier. Nihon saikingaku zasshi Japanese journal of bacteriology. 2017;72(3):213-8.
57. Capoci IRG, Faria DR, Sakita KM, Rodrigues-Vendramini FAV, de Souza Bonfim-Mendonça P, Becker TCA, et al. Repurposing approach identifies new treatment options for invasive fungal disease. Bioorganic chemistry. 2019;84:87-97.
58. Shin JH, Ranken R, Sefers SE, Lovari R, Quinn CD, Meng S, et al. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. Journal of clinical microbiology. 2013;51(1):136-41.
59. Piñana JL, Gómez MD, Montoro J, Lorenzo I, Pérez A, Giménez E, et al. Incidence, risk factors, and outcome of pulmonary invasive fungal disease after respiratory virus infection in allogeneic hematopoietic stem cell transplantation recipients. Transplant Infectious Disease. 2019:e13158.
60. Middleton PG, Chen SC, Meyer W. Fungal infections and treatment in cystic fibrosis. Current opinion in pulmonary medicine. 2013;19(6):670-5.
61. Chen SC-A, Meyer W, Pashley CH. Challenges in laboratory detection of fungal pathogens in the airways of cystic fibrosis patients. Mycopathologia. 2018;183(1):89-100.
62. Caliendo AM. Multiplex PCR and emerging technologies for the detection of respiratory pathogens. Clinical Infectious Diseases. 2011;52(suppl_4):S326-S30.
63. Ibáñez-Martínez E, Ruiz-Gaitán A, Pemán-García J. Update on the diagnosis of invasive fungal infection. Revista Española de Quimioterapia. 2017;30.
64. Alanio A, Bretagne S. Performance evaluation of multiplex PCR including Aspergillus—not so simple! Sabouraudia. 2016;55(1):56-62.
65. Bartlett JG, Dowell SF, Mandell LA, File Jr TM, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults. Clinical infectious diseases. 2000;31(2):347-82.
66. Bandekar N, Chickmagalure Shivaswamy V, Basavarajappa KG, Prabhakar PJ, Nagaraj P. Beta lactamases mediated resistance amongst gram negative bacilli in Burn Infection2003. 766-70 p.
67. Keith T, Saxena S, Murray J, Sharland M. Risk–benefit analysis of restricting antimicrobial prescribing in children: what do we really know? Current opinion in infectious diseases. 2010;23(3):242-8.
68. Carroll KC. Laboratory diagnosis of lower respiratory tract infections: controversy and conundrums. Journal of Clinical Microbiology. 2002;40(9):3115-20.
69. Baoutina A, Coldham T, Fuller B, Emslie KR. Improved detection of transgene and nonviral vectors in blood. Human gene therapy methods. 2013;24(6):345-54.
70. Atawodi S, Atawodi J, Dzikwi A. polymerase chain reaction: theory, practice and application: A REVIEW. 2010.
71. Coen DM. Quantitation of Rare DNA s by PCR. Current protocols in molecular biology. 2001;56(1):15.7. 1-.7. 8.
72. Chamberlain JS, Gibbs RA, Rainer JE, Nguyen PN, Thomas C. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic acids research. 1988;16(23):11141-56.
73. Crisan D. Molecular diagnostic testing for determination of myeloid lineage in acute leukemias. Annals of Clinical & Laboratory Science. 1994;24(4):355-63.
74. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clinical microbiology reviews. 2000;13(4):559-70.
75. Markoulatos P, Georgopoulou A, Kotsovassilis C, Karabogia‐Karaphillides P, Spyrou N. Detection and typing of HSV‐1, HSV‐2, and VZV by a multiplex polymerase chain reaction. Journal of clinical laboratory analysis. 2000;14(5):214-9.
76. Henegariu O, Heerema N, Dlouhy S, Vance G, Vogt P. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997;23(3):504-11.
77. Jackson R, Morris D, Cooper R, Bailey A, Klapper P, Cleator G, et al. Multiplex polymerase chain reaction for adenovirus and herpes simplex virus in eye swabs. Journal of virological methods. 1996;56(1):41-8.
78. Reddington K, Tuite N, Barry T, O’Grady J, Zumla A. Advances in multiparametric molecular diagnostics technologies for respiratory tract infections. Current opinion in pulmonary medicine. 2013;19(3):298-304.
79. Tsalik EL, Bonomo RA, Fowler Jr VG. New molecular diagnostic approaches to bacterial infections and antibacterial resistance. Annual review of medicine. 2018;69:379-94.
80. Mothershed EA, Whitney AM. Nucleic acid-based methods for the detection of bacterial pathogens: present and future considerations for the clinical laboratory. Clinica Chimica Acta. 2006;363(1-2):206-20.
81. Liao S, Wang L, Ji X, Chen J, Li Q, Ma L. Simultaneous detection of 15 respiratory pathogens with a fluorescence probe melting curve analysis-based multiplex real-time PCR assay. International journal of molecular epidemiology and genetics. 2019;10(2):29.
82. Paba P, Farchi F, Mortati E, Ciccozzi M, Piperno M, Perno C, et al. Screening of respiratory pathogens by Respiratory Multi Well System (MWS) r-gene™ assay in hospitalized patients. 2014.
83. Pillet S, Lardeux M, Dina J, Grattard F, Verhoeven P, Le Goff J, et al. Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections. PLoS One. 2013;8(8):e72174.
84. Pahlow S, Lehniger L, Hentschel S, Seise B, Braun SD, Ehricht R, et al. Rapid Isolation and Identification of Pneumonia-Associated Pathogens from Sputum Samples Combining an Innovative Sample Preparation Strategy and Array-Based Detection. ACS Omega. 2019;4(6):10362-9.
85. Havlicek V, Lemr K, Schug KA. Current trends in microbial diagnostics based on mass spectrometry. Analytical chemistry. 2012;85(2):790-7.
86. Bissonnette L, Bergeron MG. Multiparametric technologies for the diagnosis of syndromic infections. Clinical Microbiology Newsletter. 2012;34(20):159-68.
87. Gharabaghi F, Hawan A, Drews S, Richardson S. Evaluation of multiple commercial molecular and conventional diagnostic assays for the detection of respiratory viruses in children. Clinical Microbiology and Infection. 2011;17(12):1900-6.
88. Dabisch-Ruthe M, Vollmer T, Adams O, Knabbe C, Dreier J. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay. BMC infectious diseases. 2012;12(1):163.
89. Pierce VM, Elkan M, Leet M, McGowan KL, Hodinka RL. Comparison of the Idaho Technology FilmArray system to real-time PCR for detection of respiratory pathogens in children. Journal of clinical microbiology. 2012;50(2):364-71.
90. Babady NE. The FilmArray® respiratory panel: an automated, broadly multiplexed molecular test for the rapid and accurate detection of respiratory pathogens. Expert review of molecular diagnostics. 2013;13(8):779-88.
91. Dalovisio JR. Overview of lower respiratory tract infections: Diagnosis and treatment. Ochsner Journal. 2002;4(4):227-33.
92. Tenover FC. Developing molecular amplification methods for rapid diagnosis of respiratory tract infections caused by bacterial pathogens. Clinical infectious diseases. 2011;52(suppl_4):S338-S45.
93. Society AT, America IDSo. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. American journal of respiratory and critical care medicine. 2005;171(4):388.
94. Woodhead M, Blasi F, Ewig S, Huchon G, Leven M, Ortqvist A, et al. Guidelines for the management of adult lower respiratory tract infections. European Respiratory Journal. 2005;26(6):1138-80.
95. Harris AM, Bramley AM, Jain S, Arnold SR, Ampofo K, Self WH, et al., editors. Influence of antibiotics on the detection of bacteria by culture-based and culture-independent diagnostic tests in patients hospitalized with community-acquired pneumonia. Open forum infectious diseases; 2017: Oxford University Press.
96. Beersma MF, Dirven K, van Dam AP, Templeton KE, Claas EC, Goossens H. Evaluation of 12 commercial tests and the complement fixation test for Mycoplasma pneumoniae-specific immunoglobulin G (IgG) and IgM antibodies, with PCR used as the “gold standard”. Journal of Clinical Microbiology. 2005;43(5):2277-85.
97. Wellinghausen N, Straube E, Freidank H, Von Baum H, Marre R, Essig A. Low prevalence of Chlamydia pneumoniae in adults with community-acquired pneumonia. International journal of medical microbiology. 2006;296(7):485-91.
98. Loeffelholz M, Chonmaitree T. Advances in diagnosis of respiratory virus infections. International journal of microbiology. 2010;2010.
99. Cheesbrough M. Pseudomonas and related organisms. Biochemical test to identify bacteria. Antibiotic susceptibility testing. District Laboratory Practice in tropical countries Cambridge University Press, New York, USA. 2000:1933-43.
100. Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.
101. Bauer A, Kirby W, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966;45(4_ts):493-6.
102. Monso E, Ruiz J, Rosell A, Manterola J, Fiz J, Morera J, et al. Bacterial infection in chronic obstructive pulmonary disease. A study of stable and exacerbated outpatients using the protected specimen brush. American journal of respiratory and critical care medicine. 1995;152(4):1316-20.
103. Louie M, Louie L, Simor AE. The role of DNA amplification technology in the diagnosis of infectious diseases. Cmaj. 2000;163(3):301-9.
104. ATAEI R, MEHRABI TA, HOSSEINI S, KARAMI A, Safiri Z, ALLAHVERDI M. Simultaneous detection of common bacterial meningitis: Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumonia by multiplex PCR. 2009.
105. McDonough EA, Barrozo CP, Russell KL, Metzgar D. A multiplex PCR for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis in clinical specimens. Molecular and cellular probes. 2005;19(5):314-22.
106. Murdoch DR. Molecular genetic methods in the diagnosis of lower respiratory tract infections. Apmis. 2004;112(11‐12):713-27.
107. Sidikou F, Djibo S, Taha MK, Alonso JM, Djibo A, Kairo KK, et al. Polymerase chain reaction assay and bacterial meningitis surveillance in remote areas, Niger. Emerging infectious diseases. 2003;9(11):1486.
108. Rådström P, Bäckman A, Qian N, Kragsbjerg P, Påhlson C, Olcén P. Detection of bacterial DNA in cerebrospinal fluid by an assay for simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and streptococci using a seminested PCR strategy. Journal of Clinical Microbiology. 1994;32(11):2738-44.
109. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox A, Kaczmarski E. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. Journal of clinical microbiology. 2001;39(4):1553-8.
110. Schuurman T, De Boer RF, Kooistra-Smid AM, Van Zwet AA. Prospective study of use of PCR amplification and sequencing of 16S ribosomal DNA from cerebrospinal fluid for diagnosis of bacterial meningitis in a clinical setting. Journal of clinical microbiology. 2004;42(2):734-40.
111. Nolte FS. Molecular diagnostics for detection of bacterial and viral pathogens in community-acquired pneumonia. Clinical infectious diseases. 2008;47(Supplement_3):S123-S6.
112. Cremers AJH. Molecular characterization of adult pneumococcal carriage and disease. Containing the course of pneumococcal encounters: [Sl: sn]; 2015.
113. Hu Q, Tu J, Han X, Zhu Y, Ding C, Yu S. Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. Journal of microbiological methods. 2011;87(1):64-9.
114. Welti M, Jaton K, Altwegg M, Sahli R, Wenger A, Bille J. Development of a multiplex real-time quantitative PCR assay to detect Chlamydia pneumoniae, Legionella pneumophila and Mycoplasma pneumoniae in respiratory tract secretions. Diagnostic microbiology and infectious disease. 2003;45(2):85-95.