Incidence of Multidrug-Resistant, Extensively Drug-Resistant, and Pandrug-Resistant Pseudomonas aeruginosa Strains Isolated from Clinical Specimens

Document Type : Original Research

Authors
Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
Abstract
Aims: Recently, overuse and misuse of antibiotics have led to the development of multidrug-resistant bacteria and infectious diseases caused by these organisms, increasing morbidity and mortality rate in patients. Pseudomonas aeruginosa as a common Gram-negative pathogen is predominantly responsible for hospital-acquired infections. In this study, the prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) P. aeruginosa strains isolated from clinical specimens of patients admitted to a teaching hospital in Gorgan, Iran, was determined.

Materials & Methods: Clinical samples of blood, urine, burn wound, eye, and secretions (pleural fluid, tracheal or bronchial aspirates and sputum) were collected from all hospitalized patients during a three-month period from April to June 2019. Using conventional biochemical methods, P. aeruginosa strains were identified, and the antibiotic resistance pattern was determined by Kirby-Bauer disc diffusion method.

Findings: A total of 40 (25.4%) P. aeruginosa strains were isolated from 377 clinical specimens. Most of the P. aeruginosa strains were isolated from wound (35%) and urine (30%) samples. Most of the P. aeruginosa positive samples were recovered from intensive care unit (32.5%) and burn ward (30%). The highest susceptibility was shown to fosfomycin (100%), and the lowest susceptibility was observed to ceftazidime (87.5%), followed by aztreonam (60%). Based on the results, 52.5 and 20% of the isolates were MDR and XDR, respectively. All of the MDR isolates exhibited susceptibility to colistin. No PDR phenotype was observed.

Conclusion: Continuous monitoring of drug resistant strains among clinical isolates of P. aeruginosa must be done to adopt effective strategies to decrease the threat of antimicrobial resistance.

Keywords

Subjects


1- Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Diseases.2019; 6: 109-119. doi.org/10.1016/j.gendis.2019.04.001
2- Basak S, Singh P, Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J Pathog. 2016; 1-5. Article ID 4065603 doi.org/10.1155/2016/4065603
3- Kanani M, Khediri T, Khazaei S, Madani S, Malekianzadeh E. Evaluation of Pseudomonas aeruginosa resistance to ceftazidime and Imipenem in Imam Reza Hospital in Kermanshah during 2006-2010. J Lorestan Univ Med Sci. 2012; 15: 52-60. [In Persian]
4- Mardaneh J, Ahmadi KH, Jahan Sepas. Determination Antimicrobial Resistance Profile of Pseudomonas aeruginosa Strains Isolated from Hospitalized Patients in Taleghani Hospital (Ahvaz, Iran) from 2011-2012. J Fasa Univ Med Sci. 2013; 3 (3): 188-193. [In Persian]
5- Furtado GH, Gales AC, Perdiz LB, Santos AF, Wey SB, Medeiros EA. Risk factors for hospital-acquired pneumonia caused by imipenem-resistant Pseudomonas aeruginosa in an intensive care unit. Anaesth Intensive Care. 2010; 38(6):994-1001. doi: 10.1177/0310057X1003800605.
6- Ha DG, O’Toole GA. c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas aeruginosa Review. Microbiol Spectr. 2015; 3(2):1-20. doi: 10.1128/microbiolspec.MB-0003-2014
7- Yayan J, Ghebremedhin B, Rasche K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PLOS ONE. 2015:1-20. doi:10.1371/journal.pone.0139836
8- Gill JS, Arora S, Khanna SP, Hari Kumar KVS. Prevalence of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa from a Tertiary Level Intensive Care Unit. J Glob Infect Dis. 2016; 8(4): 155–159. doi: 10.4103/0974-777X.192962
9- Magiorakos A.P, Srinivasan A, Carey R. B, Carmeli Y, Falagas M. E, Giske C. G, Harbarth S, Hindler J. F, Kahlmeter G, Olsson-Liljequist B, Paterson D. L, Rice L. B, Stelling J, Struelens M. J, Vatopoulos A, Weber J. T, Monnet D. L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18: 268–281 doi:10.1111/j.1469-0691.2011.03570.x
10- Imani Foolad AA, Rostami Z, Shapouri R. Antimicrobial resistance and ESBL prevalence in Pseudomonas aeruginosa strains isolated from clinical specimen by phenotypic and genotypic methods. J Ardabil Univ Med Sci. 2010, 7(3):189-98. [In Persian]
11- Wu AHB. (2006) Tietz Clinical Guide to Laboratory Tests, 4th Edition. Elsevier. 8: 1620-2.
12- Clinical and Laboratory Standards Institute. (2018) Performance Standards for Antimicrobial Disk Susceptibility Tests. M02. Wayne, PA. ISBN Number: 1-56238-835-5.
13- Saderi H, Owlia P. Detection of Multidrug Resistant (MDR) and Extremely Drug Resistant (XDR) Pseudomonas aeruginosa Isolated from Patients in Tehran, Iran. Iran J Pathol. 2015; 10(4): 265 – 271.
14- Shokri D, Rabbani Khorasgani M, Zaghian S, Fatemi S.M, Mohkam M, Ghasemi Y, r Taheri-Kafrani A. Determination of Acquired Resistance Profiles of Pseudomonas aeruginosa Isolates and Characterization of an Effective Bacteriocin-Like Inhibitory Substance (BLIS) Against These Isolates. Jundishapur J Microbiol. 2016; 9(8):1-8. doi: 10.5812/jjm.32795.
15- Bitew A. High Prevalence of Multi-Drug Resistance and Extended Spectrum Beta Lactamase Production in Non-Fermenting Gram-Negative Bacilli in Ethiopia. Infect Dis Res Treat. 2019; 12: 1–7. doi.org/10.1177/117863371988495
16- Ghasemian Safaei H, Moghim SH, Nasr Isfahani B, Fazeli H, Poursina F, Yadegari S, Nasirmoghadas P, Hosseininassab Nodoushan S.A. Distribution of the Strains of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa Isolates from Burn Patients. Advanced Biomedical Research. 2017; 1-9. doi: 10.4103/abr.abr_239_16
17- Amini A, Ebrahimzadeh Namvar A. Antimicrobial Resistance Pattern and Presence of Beta-Lactamase Genes in Pseudomonas aeruginosa Strains Isolated from Hospitalized Patients, Babol-Iran. J Med Bacteriol. 2019; 8(1, 2): 45-50.
18- Moazami-Goudarzi S, Eftekhar F. Assessment of Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Burn Isolates in Tehran. Jundishapur J Microbiol .2013; 6 (2): 162-5.
19- Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M, et al. Characterization of Pseudomonas aeruginosa strains isolated from burned patients hospitalized in a major burn center in Tehran, Iran. Acta Med Iran. 2011; 49 (10): 675-9.
20- Bayani M, Siadati S, Rajabnia R, Taher AA. Drug Resistance of Pseudomonas aeruginosa and Enterobacter cloacae Isolated from ICU, Babol, Northern Iran. Int J Mol Cell Med. 2013; 2 (4): 204-9.
21- Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013; 5 (1): 36-41.
22- Salimi H, Yakhchali B, Owlia P, Lari AR. Molecular Epidemiology and Drug Susceptibility of Pseudomonas aeruginosa Strains Isolated from Burn Patients. LabMedicine. 2010; 41 (9): 540-4.
23- Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, et al. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv Res. 2012; 12: 122.
24- De Francesco MA, Ravizzola G, Peroni L, Bonfanti C, Manca N. Prevalence of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in an Italian hospital. J Infect Public Health. 2013; 6 (3):179-85.
25- Tacconelli E, Tumbarello M, Bertagnolio S, Citton R, Spanu T, Fadda G, et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: analysis of trends in prevalence and epidemiology. Emerg Infect Dis. 2002; 8(2): 220-1.