1. Zhang N, Wang L, Deng X, Liang R, Su M, He C, Hu L, Su Y, Ren J, Yu F, et al. Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol.2020 [cited 2020 Mar 16]; 92:408–17. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25674
2. Huang P, Wang H, Cao Z, Jin H, Chi H, Zhao J, Yu B, Yan F, Hu X, Wu F, et al. A Rapid and Specific Assay for the Detection of MERS-CoV. Front Microbiol [Internet] 2018 [cited 2020 Mar 16]; 9:1101. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.01101/full
3. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: Evolving the largest RNA virus genome. Virus Res 2006; 117:17–37.
4. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol.2017; 39:529–39.
5. Xie C, Jiang L, Huang G, Pu H, Gong B, Lin H, Ma S, Chen X, Long B, Si G, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. Int J Infect Dis [Internet] 2020 [cited 2020 Mar 16]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32114193
6. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579:265–9.
7. Situation Report-59 HIGHLIGHTS.
8. WHO declares the coronavirus outbreak a global pandemic [Internet]. [cited 2020 Mar 18]; Available from: https://www.cnbc.com/2020/03/11/who-declares-the-coronavirus-outbreak-a-global-pandemic.html
9. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579:270–3.
10. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19) [Internet]. StatPearls Publishing; 2020 [cited 2020 Mar 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32150360
11. Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, Yuen K-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect [Internet] 2020 [cited 2020 Mar 16]; 9:221–36. Available from: https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1719902
12. Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol.2009; 7:439–50.
13. Lu X, Whitaker B, Sakthivel SKK, Kamili S, Rose LE, Lowe L, Mohareb E, Elassal EM, Al-sanouri T, Haddadin A, et al. Real-time reverse transcription-pcr assay panel for middle east respiratory syndrome coronavirus. J Clin Microbiol 2014; 52:67–75.
14. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol [Internet] 2016 [cited 2020 Mar 18]; 3:237–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27578435
15. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun [Internet] 2020 [cited 2020 Mar 16]; :102433. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896841120300469
16. Lei J, Li J, Li X, Qi X. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology [Internet] 2020 [cited 2020 Mar 16]; :200236. Available from: http://pubs.rsna.org/doi/10.1148/radiol.2020200236
17. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395:497–506.
18. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan JS. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv 2020; :2020.02.11.944462.
19. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol 2020;
20. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436:112–6.
21. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv [Internet] 2020 [cited 2020 Mar 16]; :2020.01.26.919985. Available from: https://www.biorxiv.org/content/10.1101/2020.01.26.919985v1
22. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Cui X, Xiao J, Meng T, Zhou W, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv 2020; :2020.01.30.927806.
23. Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, Zhou J, Shi G, Fang N, Fan J, et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. bioRxiv [Internet] 2020 [cited 2020 Mar 16]; :2020.02.03.931766. Available from: https://www.biorxiv.org/content/biorxiv/early/2020/02/04/2020.02.03.931766.full.pdf
24. Zou X, Chen K, Zou J, Han P, Hao J, Han Z, Zou X, Chen K, Zou J, Han P, et al. The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection. Front Med [Internet] 2020 [cited 2020 Mar 16]; :0. Available from: http://journal.hep.com.cn/fmd/EN/10.1007/s11684-020-0754-0
25. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci [Internet] 2020 [cited 2020 Mar 16]; 12:8. Available from: https://doi.org/10.1038/s41368-020-0074-x NS -
26. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med [Internet] 2020 [cited 2020 Mar 16]; :1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32125455
27. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020; :2020.01.31.929042.
28. Ghazi FMP, Gargari SLM. Iranian journal of microbiology. [Internet]. Tehran University of Medical Sciences; 2017 [cited 2019 Oct 9]. Available from: http://ijm.tums.ac.ir/index.php/ijm/article/view/1314
29. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol [Internet] 2019 [cited 2020 Mar 18]; 93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30626688
30. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009; 106:5871–6.
31. Mille JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 2014; 111:15214–9.
32. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res 2008; 18:290–301.
33. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol.2016; 14:523–34.
34. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal [Internet] 2020 [cited 2020 Mar 16]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095177920302045
35. Zhu J, Yamane H, Paul WE. Differentiation of Effector CD4 T Cell Populations. Annu Rev Immunol [Internet] 2010 [cited 2020 Mar 16]; 28:445–89. Available from: http://www.annualreviews.org/doi/10.1146/annurev-immunol-030409-101212
36. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, Li M, Liu Y, Wang G, et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). medRxiv 2020; :2020.02.18.20024364.
37. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, et al. Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China. 2020;
38. Min CK, Cheon S, Ha NY, Sohn KM, Kim Y, Aigerim A, Shin HM, Choi JY, Inn KS, Kim JH, et al. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep 2016; 6:1–12.
39. Profile of Specific Antibodies to the SARS-Associated Coronavirus [Internet]. [cited 2020 Mar 16]; Available from: https://www.nejm.org/doi/pdf/10.1056/NEJM200307313490520
40. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJM, van der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol [Internet] 2006 [cited 2020 Mar 18]; 80:5927–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16731931
41. Belser JA, Rota PA, Tumpey TM. Ocular Tropism of Respiratory Viruses. Microbiol Mol Biol Rev 2013; 77:144–56.
42. Lu C wei, Liu X fen, Jia Z fang. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet2020; 395:e39.
43. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci.2020; 12:9.
44. Consistent Detection of 2019 Novel Coronavirus in Saliva | Clinical Infectious Diseases | Oxford Academic [Internet]. [cited 2020 Mar 16]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa149/5734265
45. Municipal Water and COVID-19 [Internet]. [cited 2020 Mar 18]; Available from: https://www.cdc.gov/
46. Xiao F, Tang M, Zheng X, Li C, He J, Hong Z, Huang S, Zhang Z, Lin X, Fang Z, et al. Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv 2020; :2020.02.17.20023721.
47. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA [Internet] 2020 [cited 2020 Mar 16]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32159775
48. Seah I, Su X, Lingam G. Revisiting the dangers of the coronavirus in the ophthalmology practice. Eye 2020; :1–3.
49. Xiang J, Yan M, Li H, Liu T, Lin C, Huang S, Shen C. Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold- Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19). medRxiv 2020; :2020.02.27.20028787.
50. Shanmugaraj B, Siriwattananon K, Wangkanont K, Phoolcharoen W. Allergy and Immunology Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19).
51. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, Liu L, Shan H, Lei C-L, Hui DSC, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med [Internet] 2020 [cited 2020 Mar 18]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32109013
52. Pan Y, Guan H, Zhou S, Wang Y, Li Q, Zhu T, Hu Q, Xia L. Initial CT findings and temporal changes in patients with the novel coronavirus pneumonia (2019-nCoV): a study of 63 patients in Wuhan, China. Eur Radiol 2020; :1–4.
53. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis [Internet] 2020 [cited 2020 Mar 16]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32105637
54. Jiang G, Renc X, Liu Y, Chen H, Liu W, Guo Z, Zhang Y, Chen C, Zhou J, Xiao Q, et al. Application and optimization of RT-PCR in diagnosis of SARS-CoV-2 infection. medRxiv 2020; :2020.02.25.20027755.
55. National laboraCoronavirus disease (COVID-19) technical guidance: Laboratory testing for 2019-nCoV in humanstories [Internet]. [cited 2020 Mar 18]; Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance
56. Real-Time RT-PCR Panel for Detection 2019-nCoV | CDC [Internet]. [cited 2020 Mar 16]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-detection-instructions.html
57. Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 Novel Coronavirus-Infected Pneumonia. J Med Virol [Internet] 2020 [cited 2020 Mar 16]; :jmv.25742. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32124995
58. Shen M, Zhou Y, Ye J, Abdullah AL-maskri AA, Kang Y, Zeng S, Cai S. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal [Internet] 2020 [cited 2020 Mar 16]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095177920302082
59. Setianingsih TY, Wiyatno A, Hartono TS, Hindawati E, Rosamarlina, Dewantari AK, Myint KS, Lisdawati V, Safari D. Detection of multiple viral sequences in the respiratory tract samples of suspected Middle East respiratory syndrome coronavirus patients in Jakarta, Indonesia 2015–2016. Int J Infect Dis 2019; 86:102–7.
60. Adachi D, Johnson G, Draker R, Ayers M, Mazzulli T, Talbot PJ, Tellier R. Comprehensive detection and identification of human coronaviruses, including the SARS-associated coronavirus, with a single RT-PCR assay. J Virol Methods 2004; 122:29–36.
61. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25.
62. van Elden LJR, van Loon AM, van Alphen F, Hendriksen KAW, Hoepelman AIM, van Kraaij MGJ, Oosterheert J, Schipper P, Schuurman R, Nijhuis M. Frequent Detection of Human Coronaviruses in Clinical Specimens from Patients with Respiratory Tract Infection by Use of a Novel Real‐Time Reverse‐Transcriptase Polymerase Chain Reaction. J Infect Dis [Internet] 2004 [cited 2020 Mar 16]; 189:652–7. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/381207
63. Yip SP, To SST, Leung PH, Cheung TS, Cheng PK, Lim WW. Use of Dual TaqMan Probes to Increase the Sensitivity of 1-Step Quantitative Reverse Transcription-PCR: Application to the Detection of SARS Coronavirus. Clin Chem [Internet] 2005 [cited 2020 Mar 16]; 51:1885–8. Available from: https://academic.oup.com/clinchem/article/51/10/1885/5629574
64. Hadjinicolaou A V., Farcas GA, Demetriou VL, Mazzulli T, Poutanen SM, Willey BM, Low DE, Butany J, Asa SL, Kain KC, et al. Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): A general methodology for detecting rapidly mutating viruses. Arch Virol 2011; 156:671–80.
65. Detection of 2019 novel coronavirus (2019-nCoV) in suspected human cases by RT-PCR [Internet]. [cited 2020 Mar 16]. Available from: https://www.who.int/health-topics/coronavirus/laboratory-
66. Detection of second case of 2019-nCoV infection in Japan [Internet]. [cited 2020 Mar 16]; Available from: https://www.niid.go.jp/niid/en/2019-ncov-e/9334-ncov-vir3-2.html
67. 2019-Novel Coronavirus (2019-nCoV) Real-time rRT-PCR Panel Primers and Probes.
68. Jung YJ, Park G-S, Moon JH, Ku K, Beak S-H, Kim S, Park EC, Park D, Lee J-H, Byeon CW, et al. Comparative analysis of primer-probe sets for the laboratory confirmation of SARS-CoV-2. bioRxiv 2020; :2020.02.25.964775.
69. Protocol: Real-time RT-PCR assays for the detection of SARS-CoV-2.
70. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, Ng DYM, Wan CKC, Yang P, Wang Q, et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem
71. Diagnostic detection of Novel coronavirus 2019 by Real time RTPCR. 2020.
72. National lChina CDC Primers and probes for detection 2019-nCoV (24 January 2020)aboratories [Internet]. [cited 2020 Mar 18]; Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/laboratory-guidance
73. Chan JF-W, Yip CC-Y, To KK-W, Tang TH-C, Wong SC-Y, Leung K-H, Fung AY-F, Ng AC-K, Zou Z, Tsoi H-W, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens. J Clin Microbiol [Internet] 2020 [cited 2020 Mar 16]; Available from: http://jcm.asm.org/lookup/doi/10.1128/JCM.00310-20
74. RePub, Erasmus University Repository: Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction [Internet]. [cited 2020 Mar 16]; Available from: https://repub.eur.nl/pub/87211/
75. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, Xu H. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA [Internet] 2020 [cited 2020 Mar 16]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32105304
76. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing. Radiology [Internet] 2020 [cited 2020 Mar 16]; :200343. Available from: http://pubs.rsna.org/doi/10.1148/radiol.2020200343
77. Poon LLM, Leung CSW, Tashiro M, Chan KH, Wong BWY, Yuen KY, Guan Y, Peiris JSM. Rapid detection of the Severe Acute Respiratory Syndrome (SARS) coronavirus by a loop-mediated isothermal amplification assay. Clin Chem [Internet] 2004 [cited 2020 Mar 18]; 50:1050–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15054079
78. Pyrc K, Milewska A, Potempa J. Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63. J Virol Methods 2011; 175:133–6.
79. Thai HTC, Le MQ, Vuong CD, Parida M, Minekawa H, Notomi T, Hasebe F, Morita K. Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus. J Clin Microbiol 2004; 42:1956–61.
80. Shirato K, Semba S, El-Kafrawy SA, Hassan AM, Tolah AM, Takayama I, Kageyama T, Notomi T, Kamitani W, Matsuyama S, et al. Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods [Internet] 2018 [cited 2020 Mar 18]; 258:41–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29763640
81. Shi R, Ma W, Wu Q, Zhang B, Song Y, Guo Q, Xiao W, Wang Y, Zheng W. Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection. Chinese Sci Bull 2003; 48:1165–9.
82. Guo X, Geng P, Wang Q, Cao B, Liu B. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus. J Microbiol Biotechnol [Internet] 2014 [cited 2020 Mar 18]; 24:1145–454. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24950883
83. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (80- ) 2017; 356:438–42.
84. Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, et al. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay. medRxiv 2020; :2020.03.06.20032334.
85. Zhang F, Abudayyeh OO, Gootenberg JS. A protocol for detection of COVID-19 using CRISPR diagnostics.
86. Hou T, Zeng W, Yang M, Chen W, Ren L, Ai J, Wu J, Liao Y, Gou X, Li Y, et al. Development and Evaluation of A CRISPR-based Diagnostic For 2019-novel Coronavirus. medRxiv 2020; :2020.02.22.20025460.
87. Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, et al. Development and Clinical Application of A Rapid IgM-IgG Combined Antibody Test for SARS-CoV-2 Infection Diagnosis. J Med Virol [Internet] 2020 [cited 2020 Mar 18]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32104917
88. Chen X, Zhou B, Li M, Liang X, Wang H, Yang G, Wang H, Le X. Serology of Severe Acute Respiratory Syndrome: Implications for Surveillance and Outcome. J Infect Dis [Internet] 2004 [cited 2020 Mar 18]; 189:1158–63. Available from: https://academic.oup.com/jid/article-lookup/doi/10.1086/380397
89. Serology testing for COVID-19. 2020 [cited 2020 Mar 18]; Available from: https://www.
90. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect.2020; 9:382–5.
91. Liu N, Wang L, Cai G, Zhang D, Lin J. Establishment of a simultaneous detection method for ten duck viruses using MALDI-TOF mass spectrometry. J Virol Methods [Internet] 2019 [cited 2020 Mar 18]; 273:113723. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31430495
92. Trauger SA, Junker T, Siuzdak G. Investigating Viral Proteins and Intact Viruses with Mass Spectrometry. Springer, Berlin, Heidelberg; 2003. page 265–82.
93. Xiu L, Zhang C, Wu Z, Peng J. Establishment and Application of a Universal Coronavirus Screening Method Using MALDI-TOF Mass Spectrometry. Front Microbiol [Internet] 2017 [cited 2020 Mar 18]; 8:1510. Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2017.01510/full
94. Sampath R, Hofstadler SA, Blyn LB, Eshoo MW, Hall TA, Massire C, Levene HM, Hannis JC, Harrell PM, Neuman B, et al. Rapid identification of emerging pathogens: Coronavirus. Emerg Infect Dis 2005; 11:373–9.
95. Jenkins C, Orsburn B. In silico approach to accelerate the development of mass spectrometry-based proteomics methods for detection of viral proteins: Application to COVID-19. bioRxiv 2020; :2020.03.08.980383.
96. Jenkins C, Orsburn B. In silico approach to accelerate the development of mass spectrometry-based proteomics methods for detection of viral proteins: Application to COVID-19. bioRxiv 2020; :2020.03.08.980383.