Simultaneous Detection of Bovine Rotavirus (BRV) and Bovine Viral Diarrhea (BVD) virus in Diarrheic Stool Samples: A Comparative Study of Molecular and Serological approaches

Document Type : Original Research

Authors
1 Foot and Mouth Disease Reference Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, IR Iran
2 Department of Biotechnology Research and Science Branch, Islamic Azad University, Tehran, IR Iran
3 Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, IR Iran
Abstract
Background: Calf scours (diarrhea) in unweaned calves play a major role in economic losses of animal farming industry worldwide. The present study was conducted to investigate and interpret the presence of BRV, BVDV, and Escherichia coli K99 by molecular and serological approaches simultaneously.

Materials & Methods: A total of 73 E. coli-negative diarrheic fecal samples were collected from one-week to less than one-month-old calves of Holstein dairy cattle herds of some provinces of Iran during autumn and winter. The samples were directed to antigen detection by ELISA (Enzyme Linked ImmunoSorbent Assay), RNA extraction by semi-manual approach, and cDNA synthesis for PCR amplification.

Findings: Out of 73 calves’ diarrheic fecal samples, 28 (38.3%) and 1 (1.36%) were positive for BRV and BVDR by ELISA, respectively. However, 31 (42.4%) samples were positive for BRV and non for BVDV by RT-PCR. The Kappa coefficient showed significant differences in BRV and BVDR detection between ELISA and RT-PCR methods. The distribution of the BRV-positive samples among bovine diarrheic calves was 80, 52.6, and 50% in Eslamshahr, Qazvin, and Hamedan, respectively.

Conclusion: ELISA and RT-PCR indicated high prevalence rate of BRV in autumn and winter, respectively. The present study results showed that positive cases detected by RT-PCR were more than those detected by ELISA. Further studies are needed to achieve a comprehensive preventive and therapeutic strategy to address diarrhea bovine pathogens.

Keywords


[1] S. J. Achá, I. Kühn, P. Jonsson, et al., “Studies on Calf Diarrhoea in Mozambique: Prevalence of Bacterial Pathogens,” Acta Vet. Scand., vol. 45, no. 1, p. 27, 2004.
[2] T.-Y. Hur, Y.-H. Jung, C.-Y. Choe, et al., “The dairy calf mortality : the causes of calf death during ten years at a large dairy farm in Korea,” Korean J. Vet. Res., vol. 53, no. 2, pp. 103–108, Jun. 2013.
[3] O. Østerås, M. S. Gjestvang, S. Vatn, and L. Sølverød, “Perinatal death in production animals in the Nordic countries – incidence and costs,” Acta Vet. Scand., vol. 49, no. S1, p. S14, Dec. 2007.
[4] D. J. Reynolds, J. H. Morgan, N. Chanter, et al., “Microbiology of calf diarrhoea in southern Britain.,” Vet. Rec., vol. 119, no. 2, pp. 34–9, Jul. 1986.
[5] C. J. M. Bartels, M. Holzhauer, R. Jorritsma, W. A. J. M. Swart, and T. J. G. M. Lam, “Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves.,” Prev. Vet. Med., vol. 93, no. 2–3, pp. 162–9, Feb. 2010.
[6] M. M. Izzo, P. D. Kirkland, V. L. Mohler, et al., “Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea.,” Aust. Vet. J., vol. 89, no. 5, pp. 167–73, May 2011.
[7] Y. Cho and K.-J. Yoon, “An overview of calf diarrhea - infectious etiology, diagnosis, and intervention.,” J. Vet. Sci., vol. 15, no. 1, pp. 1–17, 2014.
[8] S.-C. Chen, L.-B. Tan, L.-M. Huang, and K.-T. Chen, “Rotavirus infection and the current status of rotavirus vaccines.,” J. Formos. Med. Assoc., vol. 111, no. 4, pp. 183–93, Apr. 2012.
[9] H. B. Greenberg and M. K. Estes, “Rotaviruses: from pathogenesis to vaccination.,” Gastroenterology, vol. 136, no. 6, pp. 1939–51, May 2009.
[10] M. Iturriza Gómara, C. Wong, S. Blome, U. Desselberger, and J. Gray, “Rotavirus subgroup characterisation by restriction endonuclease digestion of a cDNA fragment of the VP6 gene.,” J. Virol. Methods, vol. 105, no. 1, pp. 99–103, Aug. 2002.
[11] N. J. Maclachlan and E. J. Dubovi, Fenner’s Veterinary Virology, 4th ed. Elsevier, 2011.
[12] K. Dhama, R. S. Chauhan, M. Mahendran, and S. V. S. Malik, “Rotavirus diarrhea in bovines and other domestic animals.,” Vet. Res. Commun., vol. 33, no. 1, pp. 1–23, Jan. 2009.
[13] V. Martella, K. Bányai, J. Matthijnssens, C. Buonavoglia, and M. Ciarlet, “Zoonotic aspects of rotaviruses.,” Vet. Microbiol., vol. 140, no. 3–4, pp. 246–55, Jan. 2010.
[14] J. Buesa, J. Colomina, J. Raga, A. Villanueva, and J. Prat, “Evaluation of reverse transcription and polymerase chain reaction (RT/PCR) for the detection of rotaviruses: applications of the assay.,” Res. Virol., vol. 147, no. 6, pp. 353–61, Nov. 1996.
[15] Q. Fan, Z. Xie, Z. Xie, et al., “Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses.,” PLoS One, vol. 12, no. 2, p. e0171287, Feb. 2017.
[16] M. T. Garoussi, J. Mehrzad, and A. Nejati, “Investigation of persistent infection of bovine viral diarrhea virus (BVDV) in Holstein dairy cows.,” Trop. Anim. Health Prod., vol. 51, no. 4, pp. 853–858, May 2019.
[17] L. Liu, H. Xia, N. Wahlberg, S. Belák, and C. Baule, “Phylogeny, classification and evolutionary insights into pestiviruses.,” Virology, vol. 385, no. 2, pp. 351–7, Mar. 2009.
[18] C. Grøndahl, A. Uttenthal, H. Houe, et al., “Characterisation of a pestivirus isolated from persistently infected mousedeer ( Tragulus javanicus).,” Arch. Virol., vol. 148, no. 8, pp. 1455–63, Aug. 2003.
[19] R. Krametter-Froetscher, M. Duenser, B. Preyler, et al., “Pestivirus infection in sheep and goats in West Austria.,” Vet. J., vol. 186, no. 3, pp. 342–6, Dec. 2010.
[20] L. R. Saa, A. Perea, I. García-Bocanegra, et al., “Seroprevalence and risk factors associated with bovine viral diarrhea virus (BVDV) infection in non-vaccinated dairy and dual purpose cattle herds in Ecuador.,” Trop. Anim. Health Prod., vol. 44, no. 3, pp. 645–9, Mar. 2012.
[21] E. Shirvani, M. Lotfi, M. Kamalzadeh, et al., “Seroepidemiological study of bovine respiratory viruses (BRSV, BoHV-1, PI-3V, BVDV, and BAV-3) in dairy cattle in central region of Iran (Esfahan province).,” Trop. Anim. Health Prod., vol. 44, no. 1, pp. 191–5, Jan. 2012.
[22] F. Hemmatzadeh, W. Boardman, A. Alinejad, A. Hematzade, and M. K. Moghadam, “Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran.,” PLoS One, vol. 11, no. 12, p. e0168756, Dec. 2016.
[23] D. D. Nelson, J. L. Duprau, P. L. Wolff, and J. F. Evermann, “Persistent Bovine Viral Diarrhea Virus Infection in Domestic and Wild Small Ruminants and Camelids Including the Mountain Goat (Oreamnos americanus),” Front. Microbiol., vol. 6, p. 1415, Jan. 2016.
[24] S. Ghaemmaghami, M. Ahmadi, A. Deniko, L. Mokhberosafa, and M. Bakhshesh, “Serological study of BVDV and BHV-1 infections in industrial dairy herds of Arak, Iran,” Iran. J. Vet. Sci. Technol., vol. 5, no. 2, pp. 53–61, 2013.
[25] H. Houe, “Epidemiological features and economical importance of bovine virus diarrhoea virus (BVDV) infections.,” Vet. Microbiol., vol. 64, no. 2–3, pp. 89–107, Jan. 1999.
[26] A. Mayameei, G. Mohammadi, S. Yavari, E. Afshari, and A. Omidi, “Evaluation of relationship between Rotavirus and Coronavirus infections with calf diarrhea by capture ELISA,” Comp. Clin. Path., vol. 19, no. 6, pp. 553–557, Dec. 2010.
[27] O. Madadgar, A. Nazaktabar, H. Keivanfar, T. Zahraei Salehi, and S. Lotfollah Zadeh, “Genotyping and determining the distribution of prevalent G and P types of group A bovine rotaviruses between 2010 and 2012 in Iran.,” Vet. Microbiol., vol. 179, no. 3–4, pp. 190–6, Sep. 2015.
[28] A. Mayameii, M. R. S. A. Shapouri, M. Ghorbanpour, M. R. H. Hajikolaei, and H. Keyvanfar, “Molecular G typing of bovine rotaviruses in Iran.,” Pakistan J. Biol. Sci. PJBS, vol. 10, no. 19, pp. 3466–9, Oct. 2007.
[29] S. Vilcek, A. J. Herring, J. A. Herring, et al., “Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis.,” Arch. Virol., vol. 136, no. 3–4, pp. 309–23, 1994.
[30] M. Ghorbanpour, H. Keyvanfar, and M. Seify-abad Shapouri, “The dsRNA Electrophoretype of Some Isolated Iranian Calf Rotaviruses,” Arch. Razi Inst., vol. 58, no. 1, pp. 85–89, 2004.
[31] F. Pourasgari, J. Kaplon, S. Karimi-Naghlani, et al., “The molecular epidemiology of bovine rotaviruses circulating in Iran: a two-year study.,” Arch. Virol., vol. 161, no. 12, pp. 3483–3494, Dec. 2016.
[32] M. Lotfi, M. Bakhshesh, and R. Fallahi, “Isolation and G-typing of Rotaviruses from diarrheal Calves in Tehran and Alborz provinces, Iran,” Arch. Razi Inst., vol. 70, no. 4, pp. 237–243, 2015.
[33] S. S. Basera, R. Singh, N. Vaid, et al., “Detection of Rotavirus Infection in Bovine Calves by RNA-PAGE and RT-PCR,” Indian J. Virol., vol. 21, no. 2, pp. 144–147, Oct. 2010.
[34] D. L. Swiatek, E. A. Palombo, A. Lee, et al., “Detection and analysis of bovine rotavirus strains circulating in Australian calves during 2004 and 2005.,” Vet. Microbiol., vol. 140, no. 1–2, pp. 56–62, Jan. 2010.
[35] M. Monini, F. Cappuccini, P. Battista, et al., “Molecular characterization of bovine rotavirus strains circulating in northern Italy, 2003-2005.,” Vet. Microbiol., vol. 129, no. 3–4, pp. 384–9, Jun. 2008.
[36] M. Hassine-Zaafrane, K. Sdiri-Loulizi, I. Ben Salem, et al., “The molecular epidemiology of circulating rotaviruses: three-year surveillance in the region of Monastir, Tunisia.,” BMC Infect. Dis., vol. 11, no. 1, p. 266, Oct. 2011.
[37] K. Sdiri-Loulizi, H. Gharbi-Khélifi, A. de Rougemont, et al., “Acute infantile gastroenteritis associated with human enteric viruses in Tunisia.,” J. Clin. Microbiol., vol. 46, no. 4, pp. 1349–55, Apr. 2008.
[38] A. Eesteghamati, M. Gouya, A. Keshtkar, et al., “Sentinel hospital-based surveillance of rotavirus diarrhea in iran.,” J. Infect. Dis., vol. 200 Suppl, no. s1, pp. S244-7, Nov. 2009.
[39] B. Khalili, L. E. Cuevas, N. Reisi, et al., “Epidemiology of rotavirus diarrhoea in Iranian children.,” J. Med. Virol., vol. 73, no. 2, pp. 309–12, Jun. 2004.
[40] A. H. Zarnani, S. Modarres, F. Jadali, et al., “Role of rotaviruses in children with acute diarrhea in Tehran, Iran.,” J. Clin. Virol., vol. 29, no. 3, pp. 189–93, Mar. 2004.
[41] A. Carbonero, A. Maldonado, A. Perea, et al., “Factores de riesgo del síndrome respiratorio bovino en terneros lactantes de Argentina,” Arch. Zootec., vol. 60, no. 229, pp. 41–51, Mar. 2011.
[42] B. Scharnböck, F.-F. Roch, V. Richter, et al., “A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population.,” Sci. Rep., vol. 8, no. 1, p. 14420, Dec. 2018.
[43] F. Zhong, N. Li, X. Huang, et al., “Genetic typing and epidemiologic observation of bovine viral diarrhea virus in Western China.,” Virus Genes, vol. 42, no. 2, pp. 204–7, Apr. 2011.
[44] B. Bhudevi and D. Weinstock, “Detection of bovine viral diarrhea virus in formalin fixed paraffin embedded tissue sections by real time RT-PCR (Taqman).,” J. Virol. Methods, vol. 109, no. 1, pp. 25–30, Apr. 2003.
[45] B. W. Brodersen, “Bovine respiratory syncytial virus.,” Vet. Clin. North Am. Food Anim. Pract., vol. 26, no. 2, pp. 323–33, Jul. 2010.
[46] C. Svensson and P. Liberg, “The effect of group size on health and growth rate of Swedish dairy calves housed in pens with automatic milk-feeders.,” Prev. Vet. Med., vol. 73, no. 1, pp. 43–53, Jan. 2006.
[47] A. Khodakaram-Tafti, A. Mohammadi, and G. H. Farjani Kish, “Molecular characterization and phylogenetic analysis of bovine viral diarrhea virus in dairy herds of Fars province, Iran.,” Iran. J. Vet. Res., vol. 17, no. 2, pp. 89–97, 2016.
[48] C. W. Canal, I. Hotzel, L. L. de Almeida, P. M. Roehe, and A. Masuda, “Differentiation of classical swine fever virus from ruminant pestiviruses by reverse transcription and polymerase chain reaction (RT-PCR).,” Vet. Microbiol., vol. 48, no. 3–4, pp. 373–9, Feb. 1996.
[49] D. Deregt, P. S. Carman, R. M. Clark, et al., “A comparison of polymerase chain reaction with and without RNA extraction and virus isolation for detection of bovine viral diarrhea virus in young calves.,” J. Vet. Diagn. Invest., vol. 14, no. 5, pp. 433–7, Sep. 2002.
[50] S. G. Kim and E. J. Dubovi, “A novel simple one-step single-tube RT-duplex PCR method with an internal control for detection of bovine viral diarrhoea virus in bulk milk, blood, and follicular fluid samples.,” Biologicals, vol. 31, no. 2, pp. 103–6, Jun. 2003.
[51] G. W. Horner, K. M. Tham, D. Orr, et al., “Comparison of an antigen capture enzyme-linked assay with reverse transcription--polymerase chain reaction and cell culture immunoperoxidase tests for the diagnosis of ruminant pestivirus infections.,” Vet. Microbiol., vol. 43, no. 1, pp. 75–84, Jan. 1995.
[52] F. Safarpoor Dehkordi, “Prevalence study of Bovine viral diarrhea virus by evaluation of antigen capture ELISA and RT-PCR assay in Bovine, Ovine, Caprine, Buffalo and Camel aborted fetuses in Iran.,” AMB Express, vol. 1, no. 1, p. 32, Oct. 2011.