References
1. Durand J, Jacquet M, Paillard L, Rais O, Gern L, Voordouw MJ. Cross-immunity and community structure of a multiple-strain pathogen in the tick vector. Appl Environ Microbiol., 2015, 81:7740 –7752. doi:10.1128/AEM.02296-15
2. Bhattacharyyaa S, Gestelandc PH, Korgenskic K, Bjørnstada ON and. Adlerb FR. Cross-immunity between strains explains the dynamical pattern of paramyxoviruses. PNAS, 2015, 112 (43) : 13396–13400
3. Salazer G, Zhang N, Fu TM. An Z. Antibody therapies for the prevention and treatment of viral infection. Vaccines, 2017, 2 :19, doi:10.1038/s41541-017-0019-3
4. Beigel JH, Tebas P, Elie-Turenne MC, Bajwa E, Bell TE, Cairns CB., et al. Immune plasma for the treatment of severe influenza: an open-label, multicentre, phase 2 randomised study. Lancet Respir Med, 2017, 5: 500–11, doi.org/10.1016/S2213-2600(17)30174-1
5. Gupta P, Kamath AV, Park S, Chiu H, Lutman J, Maia M et al. Preclinical pharmacokinetics of MHAA4549A, a human mono-clonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A. Mabs, 2016, 8 : 991–997
6. Beltramello M, Williams KL, Simmons CP, Macgno A, Simonelli L, Quyen NT, et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe, 2010, 8 : 271–283
7. Robbie GJ, Crist R, Dall’acqua WF, Jensen K, Patel NK, Losonsky GA, et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Anti- microb. Agents Chemother, 2013, 57 : 6147–6153
8. Carbonell-Estrany, X. et al. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics, 2010, 125 : 35–51
9. Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP Jr, Buckley N, et al. Viraemia suppressed in HIV-1-infected humans by broadly
neutralizing antibody 3BNC117. Nature, 2015, 522 : 487–491
10. Welburn SC, Coleman PG, Zinsstag, J. Rabies control: could innovative financing break the deadlock? Front. Vet. Sci., 2017, 4 : 32
11. Haagmans BL, Al Dhahiry SH, Reusken CB, Raj VS, Galiano M, Myers R, et al. Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis., 2014, 14(2):140-5. https://doi.org/10.1016/S1473- 3099(13)70690-X PMID: 24355866
12. Paden CR, Yusof M, Al Hammadi ZM, Queen K, Tao Y, Eltahir YM, et al. Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE. Zoonoses and Public Health, 2018, 65:322–333. DOI: https://doi.org/10.1111/zph.12435, PMID: 29239118
13. Aguanno R, ElIdrissi A, Elkholy AA, Ben Embarek P, Gardner E, Grant R, et al. MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res., 2018, 159:35-44. https://doi.org/10.1016/j. antiviral.2018.09.002 PMID: 30236531
14. Mehand MS, Al-Shorbaji F, Millett P, Murgue B. The WHO R&D Blueprint: review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res., 2018, 159: 63-7. https://doi.org/10.1016/j. antiviral.2018.09.009 PMID: 30261226
15. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med., 2012, 367(19): 1814-20. https://doi.org/10.1056/NEJMoa1211721 PMID: 23075143
16. WHO World Health Organization (WHO). Middle East respiratory syndrome coronavirus (MERS-CoV). Geneva: WHO; 2016. Available from:http://www.who.int/emergencies/ mers-cov/en
17. Miguel E, Chevalier V, Ayelet G, Ben Bencheikh MN, Boussini H, Chu DK, et al. Risk factors for MERS coronavirus infection in dromedary camels in Burkina Faso, Ethiopia, and Morocco, 2015. Euro Surveill., 2017, 22(13): 30498. https://doi. org/10.2807/1560-7917.ES.2017.22.13.30498 PMID: 28382915
18. Sikkema RS, Farag EABA, Islam M, Atta M, Reusken CBEM, Al-Hajri MM, et al. Global status of Middle East respiratory syndrome coronavirus in dromedary camels: a systematic review. Epidemiol Infect., 2019, 147: 84. https://doi. org/10.1017/S095026881800345X PMID: 30869000
19. worldometer: https://www.worldometers.info/coronavirus
20. Ministère de la santé, Portail Officiel du Coronavirus au Maroc, http://covidmaroc.ma/Pages/Accueil/AR.aspx
21. Minitère de la Santé, Portail Officiel de Coronavirus-Morocco
22. Fehr AR. and Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol., 2015, 1282: 1‐23
23. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol., 2016, 24(6): 490‐502.
24. Chen Y, Liu Q and Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis, Journal of Medical Virology, 2020 Oct, 92 (10) : 2249, DOI: 10.1002/jmv.25681
25. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol., 2016, 14(8): 523-534.
26. Wu F. Zhao S. Yu B. Chen YM. Wang W. Song ZG. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 2020 Feb 16: 265-269. Available from: https://doi.org/10.1038/ s41586-020-2008-3.
27. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet., 2020, 395: 497–506.
28. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet., 2020, 395: 514-23
29. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet., 2003, 361: 1773-8.
30. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol., 2004, 136: 95-103
31. Prompetchara E, Ketloy, and Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol., 2020, 38: 1-9, DOI 10.12932/AP-200220-0772
32. Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol., 2005, 79(9): 5288-5295
33. Risco C, Anton IM, Enjuanes
L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol., 1996;
70: 4773-7
35. Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X et al. Infidelity of SARS‐CoV Nsp14‐exonuclease mutant virus replication is revealed by complete genome sequencing. PLOS Pathog., 2010 May, 6(5): e1000896
34. Smith EC, Blanc H, Vignuzzi M, Denison MR. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLOS Pathog., 2013, 9(8):e1003565
35. Mahallawi WH, Khabour OF, Zhang Q, Makhdoum HM, Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine., 2018; 104: 8-13
36. Zumla A, Hui DS. and Perlman S. Middle East respiratory syndrome. Lancet., 2015, 386: 995-1007
37. Perlman S. and Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol., 2005, 5(12): 917-27
38. Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, et al. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res., 2017, 137: 82-92
39. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, et al. Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis., 2006, 193: 792-5
40. Al-Abdely HM, Midgley CM, Alkhamis AM, Abedi GR, Lu X, Binder AM, et al. Middle East Respiratory Syndrome Coronavirus Infection Dynamics
and Antibody Responses among Clinically Diverse Patients, Saudi Arabia. Emerg. Infect.
Dis., 2019, 25 : 753–766
41. Li C.K., Wu H., Yan H., Ma S., Wang L., Zhang M., et al.. Temperton N.J. Weiss R.A., Brenchley J.M., Douek D.C., Mongkolsapaya J., Tran B.H., Lin C.L., Screaton G.R., Hou J.L., McMichael A.J., and Xu X.N.,. T cell responses to whole SARS coronavirus in humans. J. Immunol., 2008, 181 : 5490-5500.
42. Lu G, Wang Q, Gao G.F. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol., 2015, 23: 468-478.
43. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS- CoVea target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009 ; 7 : 226-236
44. Keng CT, Zhang A, Shen S, Lip KM, Fielding BC. Tan TH, et al. Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: Implications for the development of vaccines and antiviral agents. J. Virol. 2005, 79 : 3289–3296.
45. Zhou T, Wang H, Luo D, Rowe T, Wang Z, Hogan RJ, et al. An exposed domain in the severe acute respiratory syndrome coronavirus spike protein induces neutralizing antibodies. J. Virol. 2004, 78, 7217–7226.
46. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K., et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature, 2004, 428, 561–564
47. Tai W, Wang Y, Fett CA, Zhao G, Li F, Perlman S, et al. Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants. J. Virol. 2017, 91, e01651-16
48. Chi H, Zheng X, Wang X, Wang C, Wang H, Gai W, et al. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine, 2017, 35 : 2069–2075
49. Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J. Virol., 2007, 81 : 8692-8706.
50. Leung DT, Tam FC, Ma CH, Chan PK, Cheung JL, Niu H, et al. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J. Infect. Dis. ; 2004, 190 : 379-386.
51. Lin Y, Shen X, Yang RF, Li YX, Ji YY, He YY, et al. Identification of an epitope of SARS-coronavirus nucleocapsid protein. Cell Res., 2003, 13 : 141-145
52. Woo PC, Lau SK, Wong BH, Tsoi HW, Fung AM, Chan KH, et al. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol. 2004, 42, 2306-2309.
53. He Y, Zhou Y, Siddiqui P, Niu J, Jiang S. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J. Clin. Microbiol., 2005, 43 : 3718-3726.
54. Liu J, Wu P, Gao F, Qi J, Kawana-Tachikawa A, Xie J, et al. Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Virol., 2010, 84: 11849-11857
55. Agnihothram S., Gopal R., Yount Jr., B.L., Donaldson E.F., Menachery V.D., Graham R.L., Scobey T.D., Gralinski L.E., Denison M.R., Zambon M., Baric R.S.,. Evaluation of serologic and antigenic relationships between Middle Eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J. Infect. Dis., 2014, 209 : 995-1006.
56. Meyer, B., Drosten, C., Muller, M.A. Serological assays for emerging corona- viruses: challenges and pitfalls. Virus Res. ; 2014, 194 : 175-183
57. Reusken C., Mou H., Godeke G.J., van der Hoek L., Meyer B., Muller M.A., Haagmans B., de Sousa R., Schuurman N., Dittmer U., Rottier P., Osterhaus A., Drosten C., Bosch B.J., and Koopmans M. Specific serology for emerging human coronaviruses by protein microarray. Euro Surveil., 2013, 18 : 20441
58. Du, L., Ma, C., Jiang, S. Antibodies induced by receptor-binding domain in spike protein of SARS-CoV do not cross-neutralize the novel human coronavirus hCoV-EMC. J. Infect., 2013, 67 : 348-350.
59. Müller MA, Meyer B, Corman VM, Al-Masri M, Turkestani A, Ritz D, et al. Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross- sectional, serological study. Lancet Infect Dis., 2015, 15(5): 559-64, https://doi.org/10.1016/S1473-3099(15)70090-3 PMID: 25863564
60. Abbad A, Perera RAPM, Anga L, Faouzi A, Minh NNT, Malik SMMR, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) neutralising antibodies in a high-risk human population, Morocco, November 2017 to January 2018. Euro Surveill. 2019, 24(48):pii=1900244. https://doi.org/10.2807/1560-7917.ES.2019.24.48.1900244
61. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, et al. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med., 2004, 10 : 871–875.
62. Nie , Wang G, Shi X, Zhang H, Qiu Y, He Z, et al. Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection. J. Infect. Dis. 2004, 190, 1119–1126
63. Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C. et al. Prophylactic and post exposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc. Natl. Acad. Sci. USA, 2015, 112 : 10473–10478.
64. Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun., 2015, 6 : 7712.
65. Hsieh IN. and Hartshorn KL. The Role of Antimicrobial Peptides in Influenza Virus Infection and Their Potential as Antiviral and Immunomodulatory Therapy, Pharmaceuticals, 2016, 9 : 53, doi:10.3390/ph9030053