1. Khan MSA, Ahmad I, Aqil F, Owais M, Shahid M, Musarrat J. Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. Combating fungal infections: Springer; 2010. p. 21-45.
2. Cleveland AA, Harrison,L.H.,Farley,M.M.,Hollick,R.,Stein,B., Chiller, T.M.,etal. Decliningincidenceofcandidemiaandtheshifting epidemiologyof Candida resistancein two US metropolitanareas. PLoS ONE 2015;10:e0120452.
3. Klingspor L, Tortorano,A.M.,Peman,J.,Willinger,B.,Hamal,P.,Sendid,B., etal. Invasive Candida infections in surgical patients inintensive care units: aprospective. ClinMicrobiol Infect. 2015.
4. Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology. 2011;9(2):109-18.
5. Stanley NR, Lazazzera BA. Environmental signals and regulatory pathways that influence biofilm formation. Molecular microbiology. 2004;52(4):917-24.
6. Mitchell SGaaP. Mucosal biofilm of Candida albicans. Curent opinion in microbiology. 2011(14):380-5.
7. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews. 2002;15(2):167-93.
8. Srikantha T, Tsai, L.K., Daniels, K. and Soll, D.R. EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J Bacteriol. 2000(182):1580-91.
9. Sohn K, Urban, C., Brunner, H., Rupp, S. EFG1 is a major regulator of cell wall dynamics in candida albicans as revealed by DNA microarrays. Molecular Microbiol. 2003;1(47):89-102.
10. Nadeem SG, Shafiq, A., Shazia, T., Yasmeen, Anjum, H., Shahana, U. Effect of growth media, pH and temperature on yeast to hyphal transition in Candida albicans. Open J medical Microbiol. 2013(3):185-92.
11. Guinea J, Sánchez-Somolinos M,Cuevas O, Peláez T ,and Bouza E. Fluconazoleresistancemechanismsin Candidakrusei: thecontribution ofefflux-pumps. MedMycol. 2006(44):575-8.
12. Nuzhat T VG. Antifungal investigations on plant essential oils. Internat J Pharm Pharmaceut Sci. 2014(5):19-28.
13. Walters D, Raynor L, Mitchell A, Walker R, Walker K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia. 2004;157(1):87-90.
14. Thibane VS KJ, Ells R, Van Wyk PWJ, Pohl CH. Effect of marine polyunsaturated fatty acids on biofilm formation of C. albicans and C. dubliniensis. Marine Drugs. 2010(8):2597-604.
15. Murzyn A KA, Stefanowicz P, Dziadkowiec D, Łukaszewicz M. . . 2010;. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLos ONE. 2010(5:e12050).
16. Carballeira N. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Progress in lipid research. 2008;47(1):50-61.
17. Traul KA, Driedger A, Ingle DL, Nakhasi D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem Toxicol. 2000; 38(1); P 79-98.
18. Kumari. A Y, S. K., Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces Biointerfaces. 2010;75:1-18.
19. Nahar M DT, Murugesan S, Asthana A, Mishra D, Rajkumar V, Tare M, Saraf S, Jain NK. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carrier Syst. 2006;4(23):259-318.
20. Nikoomanesh F, Roudbarmohammadi S, Khoobi M, Haghighi F, Roudbary M. Design and synthesis of mucoadhesive nanogel containing farnesol: investigation of the effect on HWP1, SAP6 and Rim101 genes expression of Candida albicans in vitro. Artificial cells, nanomedicine, and biotechnology. 2019;47(1):64-72.
21. Nikoomanesh F, Bashardoust B. Effect of Farnesol on Responsive Gene Expressions in Hyphal Morphogenesis Transformation of Candida albicans. Infection Epidemiology and Microbiology. 2018;4(2):73-7.
22. Maryam Roudbary SR, Bita Bakhshi, Zahra Farhadi and Fatemeh Nikoomanesh. Identification of Candida species isolated form Iranian women eith vaginal candidasis by PCR-RFLP method. European journal of experimental biology. 2013;3(6):365-9.
23. Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VS-Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Accounts of chemical research. 2007;40(9):846-53.
24. Chinatangkul N, Limmatvapirat C, Nunthanid J, Luangtana-Anan M, Sriamornsak P, Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian journal of pharmaceutical sciences. 2018;13(5):459-71.
25. Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: The application of nanogel in drug delivery. Materials Science and Engineering: C. 2016;60:560-8.
26. Avis TJ, Bélanger RR. Specificity and Mode of Action of the Antifungal Fatty Acid cis-9-Heptadecenoic Acid Produced byPseudozyma flocculosa. Applied and environmental microbiology. 2001;67(2):956-60.
27. Bergsson G, Arnfinnsson J, Steingrı́msson Ó, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrobial agents and chemotherapy. 2001;45(11):3209-12.
28. Takahashi M, Inoue S, Hayama K, Ninomiya K, Abe S. Inhibition of Candida Mycelia Growth by a Medium Chain Fatty Acids, Capric Acid in Vitoro and its Therapeutic Efficacy in Murine Oral Candidiasis. Medical mycology journal. 2012;53(4).
29. Flavia Chiva Carvalho MLB, Raul Cesar Evangelista, Maria Palmira Daflon Gremiao. mucoadhesive drug delivery systems. Braziliam journal of pharmaceutical sciences. 2010;46(1).
30. Srikantha T, Tsai LK, Daniels K, Soll DR. EFG1 Null Mutants of Candida albicansSwitch but Cannot Express the Complete Phenotype of White-Phase Budding Cells. Journal of bacteriology. 2000;182(6):1580-91.