References
[1] J. C. Martı and C. S. Martı, “A new microbial gluten-degrading prolyl endopeptidase : Potential application in celiac disease to reduce gluten immunogenic peptides,” pp. 1–22, 2019, doi: 10.1371/journal.pone.0218346.
[2] V. Montserrat, M. J. Bruins, L. Edens, and F. Koning, “Influence of dietary components on Aspergillus niger prolyl endoprotease mediated gluten degradation,” Food Chem., vol. 174, p. 440—445, 2015, doi: 10.1016/j.foodchem.2014.11.053.
[3] T. Walter, H. Wieser, and P. Koehler, “Degradation of gluten in rye sourdough products by means of a proline-specific peptidase,” Eur. Food Res. Technol., vol. 240, no. 3, pp. 517–524, 2015, doi: 10.1007/s00217-014-2350-5.
[4] T. Walter, H. Wieser, and P. Koehler, “SC,” J. Cereal Sci., 2014, doi: 10.1016/j.jcs.2014.02.012.
[5] I. Comino et al., “Fecal Gluten Peptides Reveal Limitations of Serological Tests and Food Questionnaires for Monitoring Gluten-Free Diet in Celiac Disease Patients,” Am. J. Gastroenterol., vol. 111, no. 10, pp. 1456–1465, 2016, doi: 10.1038/ajg.2016.439.
[6] S. STENMAN, Coeliac Disease-inducing Gluten. 2011.
[7] M. I. Pinto-Sánchez et al., “Bifidobacterium infantis NLS Super Strain Reduces the Expression of α-Defensin-5, a Marker of Innate Immunity, in the Mucosa of Active Celiac Disease Patients,” J. Clin. Gastroenterol., vol. 51, no. 9, pp. 814–817, 2017, doi: 10.1097/MCG.0000000000000687.
[8] R. Shetty et al., “Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles,” Enzyme Microb. Technol., vol. 107, pp. 57–63, 2017, doi: 10.1016/j.enzmictec.2017.08.002.
[9] N. G. Heredia-Sandoval, M. Y. Valencia-Tapia, A. M. Calderón de la Barca, and A. R. Islas-Rubio, “Microbial proteases in baked goods: modification of gluten and effects on immunogenicity and product quality,” Foods, vol. 5, no. 3, p. 59, 2016.
[10] T. Diefenthal, “Rapid purification of proline-specific endopeptidase from F / avobacte & m ~ e ~~~ gose ~ fic ~~ heteroiogously expressed in ~ sc ~ e ~~ c ~~ a co / i,” pp. 5–8, 1995.
[11] M. Lopez and L. Edens, “Effective prevention of chill-haze in beer using an acid proline-specific endoprotease from Aspergillus niger,” J. Agric. Food Chem., vol. 53, no. 20, pp. 7944–7949, 2005, doi: 10.1021/jf0506535.
[12] D. Stepniak et al., “Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease,” Am. J. Physiol. - Gastrointest. Liver Physiol., vol. 291, no. 4, pp. 621–629, 2006, doi: 10.1152/ajpgi.00034.2006.
[13] J. König, S. Holster, M. J. Bruins, and R. J. Brummer, “Randomized clinical trial: Effective gluten degradation by Aspergillus Niger-derived enzyme in a complex meal setting,” Sci. Rep., vol. 7, no. 1, 2017, doi: 10.1038/s41598-017-13587-7.
[14] L. Edens, P. Dekker, R. Van Der Hoeven, F. Deen, A. de Roos, and R. Floris, “Extracellular prolyl endoprotease from Aspergillus niger and its use in the debittering of protein hydrolysates,” J. Agric. Food Chem., vol. 53, no. 20, pp. 7950–7957, 2005.
[15] M. Šebela et al., “Identification of N-glycosylation in prolyl endoprotease from Aspergillus niger and evaluation of the enzyme for its possible application in proteomics,” J. Mass Spectrom., vol. 44, no. 11, pp. 1587–1595, 2009, doi: 10.1002/jms.1667.
[16] M. Akeroyd et al., “AN-PEP, proline-specific endopeptidase, degrades all known immunostimulatory gluten peptides in beer made from barley malt,” J. Am. Soc. Brew. Chem., vol. 74, no. 2, pp. 91–99, 2016.
[17] H. Hamedi, A. Misaghi, M. H. Modarressi, and T. Z. Salehi, “Generation of a Uracil Auxotroph Strain of the Probiotic Yeast Saccharomyces boulardii as a Host for the Recombinant Protein Production,” vol. 5, no. 1, pp. 29–34, 2013.
[18] R. Capparelli, I. Ventimiglia, L. Longobardo, and D. Iannelli, “Quantification of gliadin levels to the picogram level by flow cytometry,” Cytom. Part A, vol. 63, no. 2, pp. 108–113, 2005, doi: 10.1002/cyto.a.20109.
[19] Z. Fathi, L. R. R. Tramontin, G. Ebrahimipour, I. Borodina, and F. Darvishi, “Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates,” FEMS Yeast Res., vol. 21, no. 1, pp. 1–11, 2021, doi: 10.1093/femsyr/foaa068.
[20] J. A. Lee and H. Y. Chee, “ In Vitro Antifungal Activity of Equol against Candida albicans ,” Mycobiology, vol. 38, no. 4, p. 328, 2010, doi: 10.4489/myco.2010.38.4.328.
[21] J. A. Tye-Din, H. J. Galipeau, and D. Agardh, “Celiac disease: A review of current concepts in pathogenesis, prevention, and novel therapies,” Front. Pediatr., vol. 6, no. November, pp. 1–19, 2018, doi: 10.3389/fped.2018.00350.
[22] J. A. Tye-din et al., “The effects of ALV003 pre-digestion of gluten on immune response and symptoms in celiac disease in vivo,” Clin. Immunol., vol. 134, no. 3, pp. 289–295, 2010, doi: 10.1016/j.clim.2009.11.001.
[23] C. Kang, X. W. Yu, and Y. Xu, “Gene cloning and enzymatic characterization of an endoprotease Endo-Pro-Aspergillus niger,” J. Ind. Microbiol. Biotechnol., vol. 40, no. 8, pp. 855–864, 2013, doi: 10.1007/s10295-013-1284-4.
[24] K. A. Scherf, H. Wieser, and P. Koehler, “Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products,” Food Res. Int., vol. 110, pp. 62–72, 2018, doi: 10.1016/j.foodres.2016.11.021.
[25] M. Hooshiyar, G. Hossein, E. Pour, M. Rostami-nejad, and F. Sadat, “Journal of Chemical Health Risks Review of Recent Advances in Treatment of Celiac Disease Using Enzymatic Gluten Degradation,” vol. 11, 2021, doi: 10.22034/jchr.2021.1907514.1167.