[1] Davies J, Davies D. Origins and evolution of antibiotic resistance. MMBR 2010; 74(3): 417–433
[2] David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 2010; 23: 616-687.
[3] Askari E, Soleymani F, Arianpoor A, Tabatabai SM, Amini A, NaderiNasab M. Epidemiology of mecA-methicillin resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. Iran J Basic Med Sci 2012; 15(5): 1010- 1019.
[4] Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. J Orthop Res 2018; 36: 22-32.
[5] Moghadam, M.T., et al., Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: lesson from animal models and clinical trials. Drug Design, Development and Therapy, 2020. 14: p. 1867.
[6] Summers WC. Félix d’Hérelle and the origins of molecular biology. Yale University Press, New Haven and Londo, 1999.
[7] Ho K. Bacteriophage therapy for bacterial infections: rekindling a memory from the pre-antibiotics era. Perspect Biol Med 2001;44:1-16.
[8] Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, et al. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci 1996;93:3188-92.
[9] Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre A-S, Lavigne R. Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012;13:699-722.
[10] Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota. J Antibiot 2019;8:131.
[11] Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8(3): 162 -173.
[12] Weber-Dąbrowska B, Mulczyk M, Górski A. Bacteriophage therapy of bacterial infections: an update of our institute’s experience. Arch Immunol Ther Exp 2000; 48(6): 547-551.
[13] Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. J Antibiot 2019;8:138.
[14] Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, et al. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int J Food Microbiol 2014;172:92-101.
[15] Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 2005;109:275-83.
[16] Tahmasbi, F., et al., Biofilm formation and molecular characterization of methicillin-resistant Staphylococcus aureus strains isolated from the patients, personnel, air and environment of ICUs. Gene Reports, 2020. 20: p. 100736.
[17] Wang Z, Zheng P, Ji W, Fu Q, Wang H, Yan Y, et al. SLPW: A virulent bacteriophage targeting methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol 2016;7:934.
[18] Nobrega FL, Costa AR, Kluskens LD, Azeredo J. Revisiting phage therapy: new applications for old resources. Trends Microbiol 2015;23:185-91.
[19] Shende R, Hirpurkar S, Sannat C, Rawat N, Pandey V. Isolation and characterization of bacteriophages with lytic activity against common bacterial pathogens. Vet World 2017;10:973.
[20] Smith HW, Huggins MB, Shaw KM. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 1987;133:1111-26.
[21] Deghorain M, Van Melderen L. The Staphylococci phages family: an overview. Viruses 2012; 4(12): 3316-3335.
[22] Melo LDR, Brandão A, Akturk E, Santos SB, Azeredo J. Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms. Viruses 2018; 10(4):182-198.
[23] Kraushaar, B., Thanh, M.D., Hammerl, J.A. et al. Isolation and characterization of phages with lytic activity against methicillin-resistant Staphylococcus aureus strains belonging to clonal complex 398. Arch Virol 2013; 158, 2341–2350.
[24] Nasser A, Azizian R, Tabasi M, Khezerloo JK, Heravi FS, Kalani MT, et al. Specification of Bacteriophage Isolated Against Clinical Methicillin-Resistant Staphylococcus Aureus. Osong Public Health Res Perspect 2019; 10(1): 20-24.
[25] Ptashne M. Lambda's switch: lessons from a module swap. Curr Biol 2006;16: 459-462.
[26] Łubowska N, Grygorcewicz B, Kosznik-Kwaśnicka K, Zauszkiewicz-Pawlak A, Węgrzyn A, et al. Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019; 7(10): 471-488.
[27] Paolozzi L, Ghelardini P. The bacteriophage Mu. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, 2006.
[28] Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages-review. Folia Microbiol 2011; 56(3): 191-200.
Nasu-Nishimura Y, Taniuchi Y, Nishimura T, Sakudo A, Nakajima K, Ano Y, et al. Cellular prion protein prevents brain damage after encephalomyocarditis virus infection in mice. Archives of virology 2008;153:1007-12.
[29] Chandni P, Amrita S, Archana PV, Pradeesh B, Bipin N, Ajith M, et al. Characterization of the bacteriophages binding to human matrix molecules, Int J Biol Macromol 2017; 110: 0141-130.