Emergence of OXA-10 and OXA-48 Like Carbapenemases among Enterobacter Isolates from Inpatients in Namazi Hospital in Shiraz

Document Type : Original Research

Authors
1 Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
2 2. Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. 1.Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract
Backgrounds: The global spread of carbapenemase-producing Enterobacteriaceae represents a public health concern. This study aimed to investigate the prevalence of carbapenem resistance and the presence of some oxacillinase types and class 1-3 integrons among Enterobacter clinical isolates from an Iranian inpatient population.

Materials & Methods: Ninety Enterobacter isolates from hospitalized patients were diagnosed by microbiological methods. Antibiogram pattern was also determined. The presence of class 1-3 integrons and four types of oxacillinase genes was assessed using PCR.

Findings: Among 90 Enterobacter isolates, the most common species was E. aerogenes, (45.6%), followed by E. cloacae (30%). The highest resistance rate was against ampicillin (96.7%). Multi-drug resistance (MDR) was substantial (93%). Carbapenemase-producers were detected in 96% of carbapenem-resistant isolates by mCIM test. The frequency of evaluated genes was as follows: intI1 = 50 (55.6%), intI2 =12 (13.3%), blaoxa-1 =6 (6.7%), blaoxa-2 =5 (5.6%), blaoxa-10 =18 (20%), and blaoxa-48 =18 (20%).

Conclusion: Determinants of class 1 integron along with OXA-10 and OXA-48 like carbapememases are responsible for relatively considerable carbapenem resistance among isolates. This is the first report about the presence of OXA-10 and OXA-48-producing Enterobacter spp. in Iran, indicating that the prevalence of oxacillinases in the country might be on the rise.

Keywords

Subjects


References
1. Davin-Regli A, Pages JM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015; 6, 392.
2. Demir T, Baran G, Buyukguclu T, Sezgin FM, Kaymaz H. Pneumonia due to Enterobacter cancerogenus infection. Folia Microbiol (Praha). 2014; 59: 527-30.
3. Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 2012; 7: 887-902.
4. Sligl W, Taylor G, Brindley PG. Five years of nosocomial Gram-negative bacteremia in a general intensive care unit: epidemiology, antimicrobial susceptibility patterns, and outcomes. Int J Infect Dis. 2006; 10: 320-5.
5. Khajuria A, Praharaj AK, Kumar M, Grover N. Carbapenem Resistance among Enterobacter species in a tertiary care hospital in central India. Chemother Res Pract. 2014; 2014: 972646.
6. Moxon CA, Paulus S. Beta-lactamases in Enterobacteriaceae infections in children. J Infect. 2016; 72 Suppl: S41-9.
7. Girlich D, Poirel L, Nordmann P. Clonal distribution of multidrug-resistant Enterobacter cloacae. Diagn Microbiol Infect Dis. 2015; 81: 264-8.
8. Lee JY, Hong YK, Lee H, Ko KS. High prevalence of non-clonal imipenem-nonsusceptible Enterobacter spp. isolates in Korea and their association with porin down- regulation. Diagn Microbiol Infect Dis. 2017; 87: 53-9.
9. Evans BA, Amyes SG. OXA β-lactamases. Clin Microbiol Rev. 2014; 27: 241-63.
10. Bocanegra-Ibarias P, Garza-González E, Morfín-Otero R, Barrios H, Villarreal-Treviño L, Rodríguez-Noriega E, et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One. 2017; 12: e0179651.
11. Qin X, Yang Y, Hu F, Zhu D. Hospital clonal dissemination of Enterobacter aerogenes producing carbapenemase KPC-2 in a Chinese teaching hospital. J Med Microbiol. 2014; 63: 222-8.
12. Lutgring JD, Limbago BM. The problem of carbapenemase-producing-carbapenem-resistant-Enterobacteriaceae detection. J Clin Microbiol. 2016; 54: 529-34.
13. Al-Hasan MN, Gould AP, Drennan C, Hill O, Justo JA, Kohn J, et al. Empirical fluoroquinolones versus broad-spectrum beta-lactams for gram-negative bloodstream infections in the absence of antimicrobial resistance risk factors. J Glob Antimicrob Resist. 2020; 22: 87-93.
14. Gillings M., Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M., et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008; 190: 5095-100.
15. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob. 2015; 14: 45.
16. Khashei R, Sarvestani FE, Malekzadegan Y, Motamedifar M. The first report of Enterobacter gergoviae carrying blaNDM-1 in Iran. Iran J Basic Med Sci. 2020; 23: 1184-90.
17. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; 28th Informational Supplement. CLSI document M100-S27. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
18. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME. Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18: 268-81.
19. Laolerd W, Akeda Y, Preeyanon L, Ratthawongjirakul P, Santanirand P. Carbapenemase-producing carbapenem-resistant Enterobacteriaceae from Bangkok, Thailand, and their detection by the Carba NP and modified carbapenem inactivation method tests. Microb Drug Resist. 2018; 24: 1006-11.
20. Gajamer VR, Bhattacharjee A, Paul D, Ingti B, Sarkar A, Kapil J, et al. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycosideresistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India. J Glob Antimicrob Resist. 2020; 20: 197-203.
21. Machado E, Cantón R, Baquero F, Galán J-C, Rollán A, Peixe L, et al. Integron content of extended-spectrum-β-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob Agents Chemother. 2005; 49: 1823-9.
22. Sugumar M, Kumar KM, Manoharan A, Anbarasu A, Ramaiah S. Detection of OXA-1 β-lactamase gene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. PLoS One. 2014; 9: e91800.
23. Kiratisin P, Apisarnthanarak A, Laesripa C, Saifon P. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob Agents Chemother. 2008; 52: 2818-24.
24. Pakbaten Toupkanlou S, Najar Peerayeh S, Pirhajati Mahabadi R. Class A and D extended-spectrum β-Lactamases in imipenem resistant Pseudomonas aeruginosa isolated from burn patients in Iran. Jundishapur J Microbiol. 2015; 8: e18352.
25. Hatrongjit R, Kerdsin A, Akeda Y, Hamada S. Detection of plasmid-mediated colistin-resistant and carbapenem-resistant genes by multiplex PCR. Methods X. 2018; 5: 532-6.
26. Hoffmann H, Stürenburg E. Heesemann J, Roggenkamp A. Prevalence of extended-spectrum β-lactamases in isolates of the Enterobacter cloacae complex from German hospitals. Clin Microbiol Infect. 2006; 12: 322-30.
27. Rosa JF, Rizek C, Marchi AP, Guimaraes T, Miranda L, Carrilho C, et al. Clonality, outer-membrane proteins profile and efflux pump in KPC-producing Enterobacter sp. in Brazil. BMC Microbiol. 2017; 17: 69.
28. Wang Su, Xiao SZ, Gu FF, Tang J, Guo XK, Ni YX, et al. Antimicrobial susceptibility and molecular epidemiology of clinical Enterobacter cloacae bloodstream isolates in Shanghai, China. PLoS One. 2017; 12: e0189713.
29. Fernández J, Montero I, Martínez Ó, Fleites A, Poirel L, Nordmann P, et al. Dissemination of multiresistant Enterobacter cloacae isolates producing OXA-48 and CTX-M-15 in a Spanish hospital. Int J Antimicrob Agents. 2015; 46: 469-74.
30. Dai W, Sun S, Yang P, Huang S, Zhang X, Zhang L. Characterization of carbapenemases, extended spectrum beta-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infect Genet Evol. 2013; 14: 1–7.
31. Zhong H, Wu ML, Feng WJ, Huang SF, Yang P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: A systematic review and meta-analysis. J Glob Antimicrob Resist. 2020; 21: 138-47.
32. Pancotto LR, Nodari CS, Rozales FP, Soldi T, Siqueira CG, Freitas AL, et al. Performance of rapid tests for carbapenemase detection among Brazilian Enterobacteriaceae isolates. Brazilian J Microbiol. 2018; 49: 914-8.
33. Davoudi-Monfared E, Khalili H. The threat of carbapenem-resistant gram-negative bacteria in a Middle East region. Infect Drug Res. 2018; 11: 1831-80.
34. Fursova NK, Astashkin EI, Knyazeva AI, Kartsev NN, Leonova ES, Ershova ON, et al. The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Ann Clin Microbiol Antimicrob. 2015; 14: 1-9.
35. Baran I, Aksu N. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob. 2016; 15: 20.
36. Greissl C, Saleh A, Hamprecht A. Rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases in Enterobacterales by a new multiplex immunochromatographic test. Eur J Clin Microbiol Infect Dis. 2019; 38: 331-5.
37. Ramazanzadeh R, Rouhi S, Hosainzadegan H, Shakib P, Nouri B. Co-occurrence of extended-spectrum beta-lactamases in isolated Enterobacter spp. from patients specimens. Arch Clin Infect Dis. 2016; 11: e26837.
38. Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of bla NDM-7 and bla OXA-48. Eur J Clin Microbiol Infect Dis. 2017; 36: 2127-35.
39. Azimi L, Nordmann P, Lari AR, Bonnin RA. First report of OXA-48-producing Klebsiella pneumoniae strains in Iran. GMS Hyg Infect Control. 2014; 7: 9.
40. Mortazavi SH, Mansouri F, Azizi M, Alvandi A, Karbasfrushan A, Madadi-Goli N, et al. Prevalence of class I and II integrons among MDR Enterobacter cloacae isolates obtained from clinical samples of children in Kermanshah, Iran. J Clin Diagn Res. 2018; 12: DC13-6.