Assessment of Antifungal Activity of Saccharomyces boulardii against Candida albicans Biofilm

Document Type : Original Research

Authors
1 Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
2 Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Abstract
Backgrounds: The fungal pathogen Candida albicans is a cause of biofilm formation in patients with oropharyngeal candidiasis. Saccharomyces boulardii is a nonpathogenic fungal probiotic that plays an important role in preventing or treating intestinal diseases. This research aimed to determine the inhibitory effect of S. boulardii probiotic yeast on biofilm formation capacity of C. albicans, which is one of the main virulence factors.

Materials & Methods: In this study, 33 oropharyngeal samples were collected from patients with suspected oropharyngeal candidiasis (OPC). The inhibitory activity of S. boulardii against biofilm formation capacity of C. albicans was investigated by crystal violet-based staining (CVS) and MTT reduction reaction. The collected data were analyzed using student's t-test in SPSS statistical software.

Findings: In this study, the probiotic yeast S. boulardii reduced the pathogenicity and virulence of C. albicans in vitro. According to the results of CVS and MTT assays, a considerable reduction (p< .001) in the biomass and viability of C. albicans biofilms was observed after 48 hours of incubation in the presence of S. boulardii extract.

Conclusion: There was a significant association between S. boulardii extract concentration and biofilm formation in both CVS and MTT assays. Biofilm formation decreased with increasing S. boulardii extract concentration and incubation time in both methods compared to the control group.

Keywords

Subjects


References
1. Khedri S, Santos A, Roudbary M, Hadighi R, Falahati M, Farahyar S, et al. Iranian HIV/AIDS patients with oropharyngeal candidiasis: identification, prevalence and antifungal susceptibility of Candida species. Letters in applied microbiology. 2018;67(4):392-9.
2. Cappelli DP, Mobley CC. Prevention in clinical oral health care: Elsevier Health Sciences; 2007.
3. Bertolini M, Vazquez Munoz R, Archambault L, Shah S, Souza J, Costa R, et al. Mucosal bacteria modulate Candida albicans virulence in oropharyngeal candidiasis. Mbio. 2021;12(4):e01937-21.
4. Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral Candida infection and therapeutic strategies. Frontiers in microbiology. 2015:1391.
5. Thompson III GR, Patel PK, Kirkpatrick WR, Westbrook SD, Berg D, Erlandsen J, et al. Oropharyngeal candidiasis in the era of antiretroviral therapy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;109(4):488-95.
6. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119-28.
7. Jahanshiri Z, Manifar S, Hatami F, Arastehnazar F, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Genotyping of Candida albicans isolates from oropharyngeal candidiasis in head and neck cancer patients in Iran: Molecular epidemiology and SAP2 gene expression. Journal de Mycologie Médicale. 2019;29(4):310-6.
8. Krasowska A, Murzyn A, Dyjankiewicz A, Łukaszewicz M, Dziadkowiec D. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS yeast research. 2009;9(8):1312-21.
9. Czerucka D, Rampal P. Diversity of Saccharomyces boulardii CNCM I-745 mechanisms of action against intestinal infections. World Journal of Gastroenterology. 2019;25(18):2188.
10. Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. Plos one. 2010;5(8):e12050.
11. Demirel G, Celik IH, Erdeve O, Saygan S, Dilmen U, Canpolat FE. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. European journal of pediatrics. 2013;172(10):1321-6.
12. Salehi M, Ahmadikia K, Mahmoudi S, Kalantari S, Jamalimoghadamsiahkali S, Izadi A, et al. Oropharyngeal candidiasis in hospitalised COVID‐19 patients from Iran: Species identification and antifungal susceptibility pattern. Mycoses. 2020;63(8):771-8.
13. Salehi RM, Bayat M, Owlia P, Gargari SLM, Hashemi SJ. Effect of Saccharomyces boulardii extract on SAP2 gene expression and antifungal susceptibility of Candida albicans. Jundishapur Journal of Microbiology. 2018;11(3).
14. Plumb JA. Cell sensitivity assays: the MTT assay. Cancer cell culture: Springer; 2004. p. 165-9.
15. Kunyeit L, Kurrey NK, Anu-Appaiah K, Rao RP. Probiotic yeasts inhibit virulence of non-albicans Candida species. MBio. 2019;10(5):e02307-19.
16. Hager CL, Isham N, Schrom KP, Chandra J, McCormick T, Miyagi M, et al. Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. MBio. 2019;10(2):e00338-19.
17. Nett JE, Andes DR. Contributions of the biofilm matrix to Candida pathogenesis. Journal of Fungi. 2020;6(1):21.
18. Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, et al. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Frontiers in Microbiology. 2021;12:932.
19. Mundula T, Ricci F, Barbetta B, Baccini M, Amedei A. Effect of probiotics on oral candidiasis: a systematic review and meta-analysis. Nutrients. 2019;11(10):2449.
20. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews Gastroenterology & Hepatology. 2020;17(11):687-701.
21. Kotowska M, Albrecht P, Szajewska H. Saccharomyces boulardii in the prevention of antibiotic‐associated diarrhoea in children: a randomized double‐blind placebo‐controlled trial. Alimentary pharmacology & therapeutics. 2005;21(5):583-90.
22. Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P. Saccharomyces boulardii preserves the barrier function and modulates the signal transduction pathway induced in enteropathogenic Escherichia coli-infected T84 cells. Infection and immunity. 2000;68(10):5998-6004.
23. Jawhara S, Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Medical Mycology. 2007;45(8):691-700.
24. Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence. 2022;13(1):89-121.
25. Roselletti E, Sabbatini S, Ballet N, Perito S, Pericolini E, Blasi E, et al. Saccharomyces cerevisiae CNCM I-3856 as a new therapeutic agent against oropharyngeal candidiasis. Frontiers in Microbiology. 2019;10:1469.
26. Pakbin B, Pishkhan Dibazar S, Allahyari S, Javadi M, Farasat A, Darzi S. Probiotic Saccharomyces cerevisiae var. boulardii supernatant inhibits survivin gene expression and induces apoptosis in human gastric cancer cells. Food Science & Nutrition. 2021;9(2):692-700.
27. Mohammad Salehi R, Bayat M, Owlia P, Mousavi Gargari SL, Hashemi SJ. Chemical composition and antifungal effect of Saccharomyces boulardii extract against Candida albicans clinical isolates. Daneshvar Medicine. 2018;26(1):1-8.
28. Yan Y, Tan F, Miao H, Wang H, Cao Y. Effect of shikonin against Candida albicans biofilms. Frontiers in Microbiology. 2019;10:1085.
29. Modiri M, Khodavaisy S, Barac A, Dana MA, Nazemi L, Aala F, et al. Comparison of biofilm-producing ability of clinical isolates of Candida parapsilosis species complex. Journal de mycologie medicale. 2019;29(2):140-6.
30. Li X, Yin L, Ramage G, Li B, Tao Y, Zhi Q, et al. Assessing the impact of curcumin on dual‐species biofilms formed by Streptococcus mutans and Candida albicans. Microbiologyopen. 2019;8(12):e937.