1. Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
2. Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., ... & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery.
3. Jiang, S., Shi, Z., Shu, Y., Song, J., Gao, G. F., Tan, W., & Guo, D. (2020). A distinct name is needed for the new coronavirus. Lancet (London, England), 395(10228), 949.
4. Liu, N. N., Tan, J. C., Li, J., Li, S., Cai, Y., & Wang, H. (2020). COVID-19 Pandemic: Experiences in China and implications for its prevention and treatment worldwide. Current Cancer Drug Targets.
5. Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents, 105924.
6. Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., ... & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1-10.
7. Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., ... & Butt, K. M. (2003). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302(5643), 276-278.
8. Alagaili, A. N., Briese, T., Mishra, N., Kapoor, V., Sameroff, S. C., de Wit, E., ... & Epstein, J. H. (2014). Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio, 5(2), e00884-14.
9. De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523.
10. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... & Chen, H. D. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798), 270-273.
11. Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology, 92(4), 418-423.
12. Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., ... & Tsoi, H. W. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 395(10223), 514-523.
13. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... & Yu, T. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395(10223), 507-513.
14. Young, B. E., Ong, S. W. X., Kalimuddin, S., Low, J. G., Tan, S. Y., Loh, J., ... & Lau, S. K. (2020). Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. Jama, 323(15), 1488-1494.
15. Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., ... & Seilmaier, M. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine, 382(10), 970-971.
16. Gonzalez-Reiche, A. S., Hernandez, M. M., Sullivan, M. J., Ciferri, B., Alshammary, H., Obla, A., ... & Alburquerque, B. (2020). Introductions and early spread of SARS-CoV-2 in the New York City area. Science.
17. da Silva Candido, D., Claro, I. M., de Jesus, J. G., de Souza, W. M., Moreira, F. R. R., Dellicour, S., ... & Manuli, E. R. (2020). Evolution and epidemic spread of SARS-CoV-2 in Brazil. medRxiv.
18. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., ... & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 395(10223), 497-506.
19. Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses—drug discovery and therapeutic options. Nature reviews Drug discovery, 15(5), 327-347.
20. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., ... & Bi, Y. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet.
21. Tan, W., Zhao, X., Ma, X., Wang, W., Niu, P., Xu, W., ... & Wu, G. (2020). A novel coronavirus genome identified in a cluster of pneumonia cases—Wuhan, China 2019− 2020. China CDC Weekly, 2(4), 61-62.
22. Xu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., ... & Guo, X. (2020). Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 12(2), 244.
23. Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221-236.
24. Davies, J. P., Almasy, K. M., McDonald, E. F., & Plate, L. (2020). Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies. bioRxiv.
25. Bianchi, M., Benvenuto, D., Giovanetti, M., Angeletti, S., Ciccozzi, M., & Pascarella, S. (2020). Sars-CoV-2 Envelope and Membrane Proteins: Structural Differences Linked to Virus Characteristics?. BioMed Research International, 2020.
26. Doyle, N., Neuman, B. W., Simpson, J., Hawes, P. C., Mantell, J., Verkade, P., ... & Maier, H. J. (2018). Infectious bronchitis virus nonstructural protein 4 alone induces membrane pairing. Viruses, 10(9), 477.
27. Yin, C. (2020). Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics. (In press)
28. Mercatelli, D., & Giorgi, F. M. (2020). Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Preprints (www.preprints.org), Posted: 30 April 2020 doi:10.20944/preprints202004.0529.v1
29. da Silva, S. J. R., da Silva, C. T. A., Mendes, R. P. G., & Pena, L. (2020). Role of Nonstructural Proteins in the Pathogenesis of SARS‐CoV‐2. Journal of Medical Virology.
30. Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., ... & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. Journal of Biomolecular Structure and Dynamics, 1-16.
31. Kametani, Y., Miyamoto, A., Tsuda, B., & Tokuda, Y. (2015). B Cell Epitope-Based Vaccination Therapy. Antibodies, 4(3), 225-239.
32. Yasmin, T., & Nabi, A. H. M. (2016). B and T Cell Epitope‐Based Peptides Predicted from Evolutionarily Conserved and Whole Protein Sequences of Ebola Virus as Vaccine Targets. Scandinavian journal of immunology, 83(5), 321-337.
33. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 ;32(5):1792-7.
34. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology. 2010 May 1;59(3):307-21.
35. Doytchinova, I.A. and Flower, D.R., 2007. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC bioinformatics, 8(1), p.4.
36. Fieser TM, John A, Tainer H, et al. Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein a-helix. Proc Natl Acad Sci. 1987; 84(23):8568–72
37. Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990; 276(1–2):172–4.
38. Emini EA, Hughes JV, Perlow DS, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985; 55(3):836–9.
39. Parker JM, Guo D, Hodges RS. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986; 25(19):5425–32.
40. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. Naturwissenschaften. 1985; 72:212–3.
41. Larsen, J.E., Lund, O. and Nielsen, M., 2006. Improved method for predicting linear B-cell epitopes. Immunome research, 2(1), p.2.
42. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978; 47:45–148.
43. Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research, 45(W1), W24-W29.
44. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O. 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007-1017.
45. Peters B, Sette A. 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132.
46. Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2014 Oct 9. pii: gku938. [Epub ahead of print] PubMed PMID: 25300482.
47. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhutter HG. 2005. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025-1037.
48. Larsen, M.V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O. and Nielsen, M., 2007. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC bioinformatics, 8(1), p.424.
49. Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A.. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.BMC Bioinformatics. 2006; 17:153.
50. Thévenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P. and Tufféry, P., 2012. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic acids research, 40(W1), pp.W288-W293.
51. Shen, Y., Maupetit, J., Derreumaux, P. and Tufféry, P., 2014. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory and computation, 10(10), pp.4745-4758.
52. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D. and Vajda, S., 2017. The ClusPro web server for protein-protein docking. nature protocols, 12(2), pp.255-278.
53. Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: an FFT‐based protein docking program with pairwise potentials. Proteins: Structure, Function, and Bioinformatics. 2006 Nov 1;65(2):392-406.
54. Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., ... & Finn, R. D. (2009). InterPro: the integrative protein signature database. Nucleic acids research, 37(suppl_1), D211-D215.
55. Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D., ... & Courcelle, E. (2007). New developments in the InterPro database. Nucleic acids research, 35(suppl_1), D224-D228.
56. Healy, M. D. (2007). Using BLAST for performing sequence alignment. Current protocols in human genetics, 52(1), 6-8.
57. Desai, D. V., & Kulkarni-Kale, U. (2014). T-cell epitope prediction methods: an overview. In Immunoinformatics (pp. 333-364). Humana Press, New York, NY.
58. Lafuente, E. M., & Reche, P. A. (2009). Prediction of MHC-peptide binding: a systematic and comprehensive overview. Current pharmaceutical design, 15(28), 3209-3220.
59. Lundegaard, C., Lund, O., Buus, S., & Nielsen, M. (2010). Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology, 130(3), 309-318.
60. Karosiene, E., Lundegaard, C., Lund, O., & Nielsen, M. (2012). NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics, 64(3), 177-186.
61. Nielsen, M., Lundegaard, C., & Lund, O. (2007). Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC bioinformatics, 8(1), 238.
62. Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., ... & Hammer, J. (1999). Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nature biotechnology, 17(6), 555-561.
63. Kar, T., Narsaria, U., Basak, S. De, D., Castiglion, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 10, 10895 https://doi.org/10.1038/s41598-020-67749-1
64. Crooke, S. N., Ovsyannikova, I. G., Kennedy, R. B., & Poland, G. A. (2020). Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Sci Rep 10, 14179 (2020). https://doi.org/10.1038/s41598-020-70864-8
65. Bhattacharya, M., Sharma, A. R., Patra, P., Ghosh, P., Sharma, G., Patra, B. C., ... & Chakraborty, C. (2020). Development of epitope‐based peptide vaccine against novel coronavirus 2019 (SARS‐COV‐2): Immunoinformatics approach. Journal of medical virology, 92(6), 618-631.
66. Wang, D., Mai, J., Zhou, W., Yu, W., Zhan, Y., Wang, N., ... & Yang, Y. (2020). Immunoinformatic analysis of T-and B-cell epitopes for SARS-CoV-2 vaccine design. Vaccines, 8(3), 355.
67. Tosta, S. F. D. O., Passos, M. S., Kato, R., Salgado, Á., Xavier, J., Jaiswal, A. K., ... & Alcantara, L. C. J. (2020). Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 1-17.
68. Jabbar, B., Rafique, S., Salo-Ahen, O. M., Ali, A., Munir, M., Idrees, M., ... & Rana, M. A. (2018). Antigenic peptide prediction from E6 and E7 oncoproteins of HPV Types 16 and 18 for therapeutic vaccine design using immunoinformatics and MD simulation analysis. Frontiers in immunology, 9, 3000.
69. Ojha, R., Pareek, A., Pandey, R. K., Prusty, D., & Prajapati, V. K. (2019). Strategic development of a next-generation multi-epitope vaccine to prevent Nipah virus zoonotic infection. ACS omega, 4(8), 13069-13079.
70. Forster, P., Forster, L., Renfrew, C., & Forster, M. (2020). Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences, 117(17), 9241-9243.
71. Adebali, O., Bircan, A., Circi, D., Islek, B., Kilinc, Z., Selcuk, B., & Turhan, B. (2020). Phylogenetic Analysis of SARS-CoV-2 Genomes in Turkey. bioRxiv.
72. Devendran, R., Kumar, M., & Chakraborty, S. (2020). Genome analysis of SARS-CoV-2 isolates occurring in India: Present scenario. Indian Journal of Public Health, 64(6), 147.
73. Bui, H. H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K. A., ... & Sette, A. (2005). Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics, 57(5), 304-314.
74. Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M. M., ... & Holzhütter, H. G. (2005). Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cellular and Molecular Life Sciences CMLS, 62(9), 1025-1037.
75. Peters, B., Bulik, S., Tampe, R., Van Endert, P. M., & Holzhütter, H. G. (2003). Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. The Journal of Immunology, 171(4), 1741-1749.
76. Alter, I., Gragert, L., Fingerson, S., Maiers, M., & Louzoun, Y. (2017). HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes. PLoS computational biology, 13(8), e1005693.
77. Peele, K. A., Srihansa, T., Krupanidhi, S., Sai, A. V., & Venkateswarulu, T. C. (2020). Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study. Journal of Biomolecular Structure & Dynamics, 1.
78. Samad, A., Ahammad, F., Nain, Z., Alam, R., Imon, R. R., Hasan, M., & Rahman, M. S. (2020). Designing a multi-epitope vaccine against SARS-CoV-2: an immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 1-17.