High Incidence of MDR and XDR Pseudomonas aeruginosa Isolates Harboring blaGES, blaVEB, and blaPER Extended-Spectrum Beta-Lactamase Genes in Iran

Document Type : Original Research

Authors
1 School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
2 Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
3 Department of Medical Microbiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
4 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences,Tehran, Iran.
5 Department of Medical Microbiology, School of Medicine, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
Abstract
Backgrounds: The ever-increasing incidence of multidrug resistance in ESBL-producing Pseudomonas aeruginosa is one of the most serious public health threats. This study aimed to investigate the antibiotic resistance profile and molecular characteristics of ESBL-producing P. aeruginosa isolates.

Materials & Methods: Antimicrobial susceptibility testing was performed for 120 P. aeruginosa clinical isolates using the Kirby-Bauer disk diffusion and broth microdilution assays. Combined disk test (CDT) was applied to screen for ESBL production among P. aeruginosa isolates. PCR assays determined the presence of blaGES, blaPER, and blaVEB genes in all isolates.

Findings: The clinical isolates of P. aeruginosa showed the highest resistance to cefotaxime (86.7%) and gentamicin (65.8%). Of 120 P. aeruginosa isolates, 60.8% were MDR, and 53.3% were XDR. The prevalence of these strains was significantly higher in hospitalized patients than in out-patients (p<.001). Also, 58 P. aeruginosa strains (48.3%) were considered as phenotypic ESBL producers. Furthermore, 15, 35, and 24.2% of P. aeruginosa isolates harbored blaGES, blaVEB, and blaPER, respectively. The incidence of MDR (71.4% vs. 41.9%, p= .001) and XDR (63.6% vs. 34.9%, p= .002) was significantly higher in ESBL-producing P. aeruginosa isolates compared to non-ESBL producers. The highest incidence rate of MDR was reported in blaVEB gene-positive P. aeruginosa isolates (95.2%), followed by isolates harboring blaPER (79.3%) and blaGES (55.6%) genes.

Conclusion: This study findings show a high prevalence of MDR ESBL-producing P. aeruginosa isolates, indicating the importance of correct identification of these superbugs and judicious use of various antibiotics to prevent their spread.

Keywords

Subjects


1. Spagnolo AM, Sartini M, Cristina ML. Pseudomonas aeruginosa in the healthcare facility setting. Rev Med Microbiol. 2021;32(3):169-75.
2. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6(2):109-19.
3. Sharifi H, Pouladfar G, Shakibaie MR, Pourabbas B, Mardaneh J, Mansouri S. Prevalence of β-lactamase genes, class 1 integrons, major virulence factors and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran. Iran J Basic Med Sci. 2019;22(7):806.
4. Su TY, Ye JJ, Hsu PC, Wu HF, Chia JH, Lee MH. Clinical characteristics and risk factors for mortality in cefepime-resistant Pseudomonas aeruginosa bacteremia. J Microbiol Immunol Infect. 2015;48(2):175-82.
5. Dehbashi S, Tahmasebi H, Arabestani MR. Association between Beta-lactam Antibiotic resistance and virulence factors in AmpC producing clinical strains of P. aeruginosa. Osong Public Health Res. 2018;9(6):325.
6. Anvarinejad M, Japoni A, Rafaatpour N, Mardaneh J, Abbasi P, Shahidi MA, et al. Burn patients infected with metallo-beta-lactamase-producing Pseudomonas aeruginosa: Multidrug-resistant strains. Arch Trauma Res. 2014;3(2).
7. Lautenbach E, Synnestvedt M, Weiner MG, Bilker WB, Vo L, Schein J, et al. Imipenem resistance in Pseudomonas aeruginosa emergence, epidemiology, and impact on clinical and economic outcomes. Infect Control Hosp Epidemiol. 2010;31(1):47-53.
8. Nazari-Alam A, Sarvari J, Motamedifar M, Khoshkharam H, Yousefi M, Moniri R, et al. The occurrence of blaTEM, blaSHV and blaOXA genotypes in Extended-Spectrum β-Lactamase (ESBL)-producing Pseudomonas aeruginosa strains in Southwest of Iran. Gene Rep. 2018;13:19-23.
9. Namaei MH, Yousefi M, Askari P, Roshanravan B, Hashemi A, Rezaei Y. High prevalence of multidrug-resistant non-fermentative Gram-negative bacilli harboring blaIMP-1 and blaVIM-1 metallo-beta-lactamase genes in Birjand, south-east Iran. Iran J Microbiol. 2021;13(4):470.
10. Askari P, Hakimi F, Moghanni M, Sebzari AR, Namaei MH. Evaluation of Fecal Colonization with Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae and Risk Factors among Cancer Patients in Eastern Iran. Infect Epidemiol Microbiol. 2021;7(4):277-87.
11. Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092.
12. Laudy AE, Róg P, Smolińska-Król K, Ćmiel M, Słoczyńska A, Patzer J, et al. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PloS one. 2017;12(6):e0180121.
13. Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns. 2012;38(6):855-60.
14. Libisch B, Poirel L, Lepsanovic Z, Mirovic V, Balogh B, Pászti J, et al. Identification of PER-1 extended-spectrum β-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonal complex CC11 from Hungary and Serbia. FEMS Microbiol Immunol. 2008;54(3):330-8.
15. Wayne PA. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 2019. 29th ed. CLSI supplement M100S.
16. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18(3):268-81.
17. Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS, et al. Prevalence of Ambler class A and D β-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother. 2005;56(1):122-7.
18. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074-9.
19. Gupta R, Malik A, Rizvi M, Ahmed M. Presence of metallo-beta-lactamases (MBL), extended-spectrum beta-lactamase (ESBL) & AmpC positive non-fermenting Gram-negative bacilli among Intensive Care Unit patients with special reference to molecular detection of blaCTX-M & blaAmpC genes. Indian J Med Res. 2016;144(2):271.
20. Farhan SM, Ibrahim RA, Mahran KM, Hetta HF, Abd El-Baky RM. Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infect Drug Resist. 2019;12:2125.
21. Chaudhary A, Bhandari D, Amatya J, Chaudhary P, Acharya B. Metallo-Beta-Lactamase producing gram-negative bacteria among patients visiting shahid Gangalal national heart centre. Austin J Microbiol. 2016;2(1):1010.
22. Porbaran M, Habibipour R. Relationship between biofilm regulating operons and various β-Lactamase enzymes: analysis of the clinical features of infections caused by non-fermentative gram-negative bacilli (NFGNB) from Iran. J Pure Appl Microbiol. 2020;14(3):1723-36.
23. Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviaño M, et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother. 2019;74(5):1244-52.
24. El-Far A, Samir S, El-Gebaly E, Omar M, Dahroug H, El-Shenawy A, et al. High Rates of Aminoglycoside Methyltransferases Associated with Metallo-Beta-Lactamases in Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Clinical Isolates from a Tertiary Care Hospital in Egypt. Infect Drug Resist. 2021;14:4849.
25. Ali FA, Bakir SH, Haji SH, Hussen BM. Evaluation of blaGES-5 and bla veb-1 genes with multidrug-resistant extend, pandrug resistance patterns (MDR, XDR, PDR), and biofilm formation in Pseudomonas aeruginosa isolates. Cell Mol Biol. 2021;67(3):52-60.
26. Shukla SD, Gupta G, Khatoon R, Jain R, Gupta A. The Rising Threat of Drug Resistant Pseudomonas aeruginosa-A Nightmare for Intensive Care Unit Patients. J Clin Diagn Res. 2021;15(11).
27. Del Giacomo P, Raffaelli F, Losito AR, Fiori B, Tumbarello M. XDR-Pseudomonas aeruginosa Outside the ICU: Is There Still Place for Colistin? Antibiotics. 2022;11(2):193.
28. Vo T, Bui Q, Nguyen H, Pham H. Antimicrobial Resistance Patterns of Pseudomonas aeruginosa in a Vietnamese Tertiary Care Hospital. Int J Trop Dis. 2022;5:058.
29. Mahto M, Shah A, Show K, Moses F, Stewart A. Pseudomonas aeruginosa in Nepali hospitals: poor outcomes amid 10 years of increasing antimicrobial resistance. Public Health Action. 2021;11(1):58-63.
30. Moroh JL, Fleury Y, Tia H, Bahi C, Lietard C, Coroller L, et al. Diversity and antibiotic resistance of uropathogenic bacteria from Abidjan. Afr J Urol. 2014;20(1):18-24.
31. Hashemi NS, Mojiri M, Yazdani Kachouyi P, Eskandari S, Mohammadian M, Alavi I. Prevalence of antibiotic resistance and blaIMP-1 gene among Pseudomonas aeruginosa strains isolated from burn and urinary tract infections in Isfahan, central Iran. Microbiol Res. 2017;8(2):59-63.
32. Sheikh AF, Shahin M, Shokoohizadeh L, Ghanbari F, Solgi H, Shahcheraghi F. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of carbapenemase genes in South of Iran. Iran J Public Health. 2020;49(5):959.
33. Hosu MC, Vasaikar SD, Okuthe GE, Apalata T. Detection of extended spectrum beta-lactamase genes in Pseudomonas aeruginosa isolated from patients in rural Eastern Cape Province, South Africa. Sci Rep. 2021;11(1):1-8.
34. Shiny P, Rajendran S, Sarayu YL. A study on isolation and antibiotic sensitivity testing of Pseudomonas aeruginosa isolated from patients with respiratory tract infection with special reference to phenotypic and genotypic characterization of Extended Spectrum Beta Lactamases (ESBL). Open J Med Microbiol. 2016;6(2):80-6.
35. Abdelrahman DN, Taha AA, Dafaallah MM, Mohammed AA, El Hussein ARM, Hashim AI, et al. β-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Res. 2020;9.
36. Afunwa RA, Odimegwu DC, Iroha RI, Esimone CO. Antimicrobial resistance status and prevalence rates of extended spectrum beta-lactamase producers isolated from a mixed human population. Bosn J Basic Med Sci. 2011;11(2):91.
37. Shahcheraghi F, Nikbin VS, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microb Drug Resist. 2009;15(1):37-9.
38. Haghighi S, Goli HR. High prevalence of bla VEB, bla GES and bla PER genes in beta-lactam resistant clinical isolates of Pseudomonas aeruginosa. AIMS Microbiol. 2022;8(2):153-66.
39. Alikhani MY, Tabar ZK, Mihani F, Kalantar E, Karami P, Sadeghi M, et al. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur J Microbiol. 2014;7(1).
40. Komijani M, Shahin K, Barazandeh M, Sajadi M. Prevalence of extended-spectrum β-lactamases genes in clinical isolates of Pseudomonas aeruginosa. Med. Lab J. 2018;12(5):34-41.
41. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Prevalence of multidrug resistant and extended spectrum beta-lactamase producing Pseudomonas aeruginosa in a tertiary care hospital. Saudi J Biol Sci. 2015;22(1):62-4.
42. Shilpakar A, Ansari M, Rai KR, Rai G, Rai SK. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase producing Gram-negative isolates from clinical samples in a tertiary care hospital of Nepal. Trop Med Health. 2021;49(1):1-9.
43. Nasser M, Ogaili M, Palwe S, Kharat AS. Molecular detection of extended spectrum β-lactamases, metallo β-lactamases, and Amp-Cβ-lactamase genes expressed by multiple drug resistant Pseudomonas aeruginosa isolates collected from patients with burn/wound infections. Burns Open. 2020;4(4):160-6.