Evaluation of the Relative Frequency of Carbapenemase Genes by Phenotypic and Genotypic Methods in Pseudomonas aeruginosa Isolates from Patients with Open Heart Surgery in Iran

Document Type : Original Research

Authors
1 Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
2 Cardiogenetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
3 Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
4 School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
5 Anatomical and clinical Pathologist, Fellowship of dermatopathology, Head of Sina Pathobiology Lab, Yazd, Iran.
Abstract
Backgrounds: Carbapenem resistance among Pseudomonas aeruginosa strains is alarming. This study aimed to investigate the relative frequency of carbapenem-resistant P. aeruginosa strains by phenotypic and genotypic methods.

Materials & Methods: The antibiotic susceptibility pattern of 60 P. aeruginosa isolates was determined by disk diffusion method (Kirby-Bauer). BD Phoenix automated microbiology system was used to identify carbapenem-resistant isolates, and the minimum inhibitory concentration (MIC) was determined using E-Test. In addition, mCIM (modified carbapenem inactivation method) phenotypic test was performed to evaluate carbapenem resistance genes in P. aeruginosa isolates. The prevalence of metallo-beta-lactamase (MβL) genes in carbapenem-resistant P. aeruginosa isolates was determined using conventional polymerase chain reaction (PCR).

Findings: The frequency of carbapenem-resistant P. aeruginosa isolates was 36% (22 of 60). The highest resistance was observed to imipenem and meropenem (36.6%), and the highest sensitivity was observed to amikacin (75%). All carbapenem-resistant P. aeruginosa isolates were confirmed by the BD Phoenix automated system (MIC> 8 µg/mL for imipenem and meropenem), E-test (MIC ˂32 µg/mL), and mCIM assay (the growth inhibition zone diameter was 6-8 mm). In carbapenem-resistant P. aeruginosa isolates, the frequency of blaVIM, blaIMP, and blaSPM genes was 9.1% (2 of 22), 4.5% (1 of 22), and 4.5% (1 of 22), respectively. BlaKPC and blaNDM genes were not found in any of the isolates.

Conclusion: Based on the present study results, all phenotypic tests used to identify carbapenemase-producing isolates had the same sensitivity (100%) and specificity (100%).

Keywords

Subjects


1. Mirsalehian A, Nakhjavani F, Bahador A, Bigverdi R, Goli H. Prevalence of MBL-producing Pseudomonas aeruginosa isolated from burn patients. Tehran Univ Med J. 2011;68(10):563-9.
2. Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC, Muleta D, et al. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerg Infect Dis. 2019;25(7):1281-8.
3. Baker SM, McLachlan JB, Morici LA. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum Vaccin Immunother. 2020;16(2):412-8.
4. Cookson WO, Cox MJ, Moffatt MF. New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol. 2018;16(2):111-20.
5. Ebrahimzadeh Shiraz T, Rezaei Yazdi H, Alijanianzadeh M. Evaluation of carbapenemase resistance in Pseudomonas aeruginosa and Enterobacteriaceae family isolated from clinical specimens by using phenotypic methods in 2014-2015. Pars J Med Sci. 2016;14(4):8-15.
6. Tsai MH, Wu TL, Su LH, Lo WL, Chen CL, Liang YH, et al. Carbapenem-resistant-only Pseudomonas aeruginosa infection in patients formerly infected by carbapenem-susceptible strains. Int J Antimicrob Agents. 2014;44(6):541-5.
7. Logan LK, Gandra S, Mandal S, Klein EY, Levinson J, Weinstein RA, et al. Multidrug-and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999–2012. J Pediatr Infect Dis Soc. 2017;6(4):352-9.
8. Shahbazi S, Karam MR, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone, and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. J Glob Antimicrob Resist. 2018;14:118-25.
9. Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. J Antimicrob Chemother. 2014;69(7):1804-14.
10. Jabalameli F, Taki E, Emaneini M, Beigverdi R. Prevalence of metallo-β-lactamase-encoding genes among carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Iran. Rev Soc Bras Med Trop. 2018;51(3):270-6.
11. de Sousa ES, Cortez AC, de Souza Carvalho Melhem M, Frickmann H, de Souza JV. Factors influencing susceptibility testing of antifungal drugs: A critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Braz J Microbiol. 2020;51:1791-800.
12. Donay JL, Mathieu D, Fernandes P, Pregermain C, Bruel P, Wargnier A, et al. Evaluation of the automated Phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol. 2004;42(4):1542-6.
13. Shivaee A, Shahbazi S, Soltani A, Ahadi E. Evaluation of the prevalence of broad-spectrum beta-lactamases (ESBLs) and carbapenemase genes in Klebsiella pneumoniae strains isolated from burn wounds in patients referred to Shahid Motahari hospital in Tehran. Med Sci. 2019;29(3):232-9.
14. Shahkolahi S, Shakibnia P, Shahbazi S, Sabzi S, Badmasti F, Asadi Karam MR, et al. Detection of ESBL and AmpC producing Klebsiella pneumoniae ST11 and ST147 from urinary tract infections in Iran. Acta Microbiol Immunol Hung. 2022;69(4):303-13.
15. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson Jr RB, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)a. Clin Infect Dis. 2013;57(4):e22-121.
16. Mohammadzadeh A, Mardaneh J, Ahmadi R, Adabi J. Evaluation of the virulence features and antibiotic resistance patterns of pathogenic Pseudomonas aeruginosa strains isolated from hospitalized patients in Gonabad, Iran. Arch Pediatr Infect Dis. 2017;5(3):e41267.
17. Weinstein MP, Lewis JS. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J Clin Microbiol. 2020;58(3):e01864-19.
18. Addis T, Araya S, Desta K. Occurrence of multiple, extensive and pan drug-resistant Pseudomonas aeruginosa and carbapenemase production from presumptive isolates stored in a biobank at Ethiopian public health institute. Infect Drug Resist. 2021;14:3609-18.
19. Clinical and laboratory Standards Institute. CLSI supplement M100: Performance standards for antimicrobial susceptibility testing. 27th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
20. Bakhat S, Taj Y, Hanif F, Faheem MF. Evaluation of phenotypic methods for detection of carbapenem resistance in isolates of Pseudomonas aeruginosa in a tertiary care hospital. J Bahria Univ Med Dent Coll. 2019;9(3):165-9.
21. Abbey TC, Deak E. What's new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clin Microbiol Newsl. 2019;41(23):203-9.
22. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23.
23. Soltani B, Heidari H, Ebrahim-Saraie HS, Hadi N, Mardaneh J, Motamedifar M. Molecular characteristics of multiple and extensive drug-resistant Acinetobacter baumannii isolates obtained from hospitalized patients in southwestern Iran. Infez Med. 2018;26(1):67-76.
24. Ma JG, An JX. Deep sternal wound infection after cardiac surgery: A comparison of three different wound infection types and an analysis of antibiotic resistance. J Thorac Dis. 2018;10(1):377-87.
25. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: Past, present, and future. Antimicrob Agents Chemother. 2011;55(11):4943-60.
26. Beig M, Arabestani MR. Evaluation of carbapenem inactivation method for accurate detection of Pseudomonas aeroginosa isolates producing carbapenemase enzymes. Sci J Kurd Univ Med Sci. 2019;24(4):103-15.
27. Cai B, Echols R, Magee G, Arjona Ferreira JC, Morgan G, Ariyasu M, et al. Prevalence of carbapenem-resistant Gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis. 2017;4(3):ofx176.
28. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):1-14.
29. Kleinkauf N, Hausemann A, Kempf VA, Gottschalk R, Heudorf U. Burden of carbapenem-resistant organisms in the Frankfurt/main metropolitan area in Germany 2012/2013–first results and experiences after the introduction of legally mandated reporting. BMC Infect Dis. 2014;14(1):1-8.
30. Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: Epidemiology, detection, and treatment options. Future Sci OA. 2020;6(3):FSO438.
31. Lisboa LF, Turnbull L, Boyd DA, Mulvey MR, Dingle TC. Evaluation of a modified carbapenem inactivation method for detection of carbapenemases in Pseudomonas aeruginosa. J Clin Microbiol. 2018;56(1):e01234-17.
32. Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067-78.
33. Gill CM, Aktaþ E, Alfouzan W, Bourassa L, Brink A, Burnham CA, et al. The ERACE-PA global surveillance program: Ceftolozane/tazobactam and ceftazidime/avibactam in vitro activity against a global collection of carbapenem-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2021;40(12):2533-41.
34. Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev. 2020;33(2):e00047-19.