1. Granados-Romero JJ, Valderrama-Treviño AI, Contreras-Flores EH, Barrera-Mera B, Herrera Enríquez M, Uriarte-Ruíz K, et al. Colorectal cancer: a review. Int J Res Med Sci. 2017;5(11):4667.
2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: a cancer journal for clinicians. 2023;73(1):17-48.
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
4. Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resistance Updates. 2019;47:100646.
5. Duong MT-Q, Qin Y, You S-H, Min J-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Experimental & molecular medicine. 2019;51(12):1-15.
6. Rong L, Lei Q, Zhang X-Z. Engineering living bacteria for cancer therapy. ACS Applied Bio Materials. 2020;3(12):8136-45.
7. Thanjavur N, Sangubotla R, Lakshmi BA, Rayi R, Mekala CD, Reddy AS, et al. Evaluating the antimicrobial and apoptogenic properties of bacteriocin (nisin) produced by Lactococcus lactis. Process Biochemistry. 2022;122:76-86.
8. Thakker DP, Narayanan R. Arginine deiminase produced by lactic acid bacteria as a potent anticancer drug. Medical Oncology. 2023;40(6):1-13.
9. Hosseini SS, Goudarzi H, Ghalavand Z, Hajikhani B, Rafeieiatani Z, Hakemi-Vala M. Antiproliferative effects of cell wall, cytoplasmic extract of Lactococcus lactis and nisin through down-regulation of cyclin D1 on SW480 colorectal cancer cell line. Iranian Journal of Microbiology. 2020;12(5):424.
10. de Arauz LJ, Jozala AF, Mazzola PG, Penna TCV. Nisin biotechnological production and application: a review. Trends in Food Science & Technology. 2009;20(3-4):146-54.
11. Hosseini SS, Hajikhani B, Faghihloo E, Goudarzi H. Increased expression of caspase genes in colorectal cancer cell line by nisin. Archives of Clinical Infectious Diseases. 2020;15(2).
12. Ni Y, Schwaneberg U, Sun Z-H. Arginine deiminase, a potential antitumor drug. Cancer letters. 2008;261(1):1-11.
13. Funayama R, Taniguchi H, Mizuma M, Fujishima F, Kobayashi M, Ohnuma S, et al. Protein‐arginine deiminase 2 suppresses proliferation of colon cancer cells through protein citrullination. Cancer science. 2017;108(4):713-8.
14. Cheng F, Zhu L, Lue H, Bernhagen J, Schwaneberg U. Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. Applied microbiology and biotechnology. 2015;99:1237-47.
15. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nature methods. 2022;19(6):679-82.
16. Hull R. Colorectal Cancer Genetics, Incidence and Risk Factors: In Search for Targeted Therapies. Cancer management and research.12:9869-82.
17. Mattiuzzi C. Concise update on colorectal cancer epidemiology. Annals of Translational Medicine.7(21):609-.
18. Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi REM, Corcione F. Worldwide burden of colorectal cancer: a review. Updates in surgery. 2016;68:7-11.
19. Numico G. Cancer survivorship: long-term side-effects of anticancer treatments of gastrointestinal cancer. Current Opinion in Oncology.27(4):351-7.
20. Abdelghani Z, Hourani N, Zaidan Z, Dbaibo G, Mrad M, Hage-Sleiman R. Therapeutic applications and biological activities of bacterial bioactive extracts. Archives of microbiology. 2021;203(8):4755-76.
21. Karpiński TM, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics. 2018;10(2):54.
22. Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie. 2020;177:164-89.
23. Löfblom J. Bacterial display in combinatorial protein engineering. Biotechnology journal. 2011;6(9):1115-29.
24. Yadav DK. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry and Biophysics.612:57-77.
25. Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Current molecular medicine. 2021;21(3):211-20.
26. Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Critical reviews in food science and nutrition. 2016;56(8):1262-74.
27. Ahmadi S, Ghollasi M, Hosseini HM. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microbial pathogenesis. 2017;111:193-7.
28. Zhang B. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT- 29 cells. Microbial Cell Factories.15(1):102-.
29. Zhang Y. Arginine deprivation as a strategy for cancer therapy: An insight into drug design and drug combination. Cancer Letters.502:58-70.
30. Ts Y. A randomized phase II study of pegylated arginine deiminase (ADI-PEG 2 0) in Asian advanced hepatocellular carcinoma patients. British Journal of Cancer.103(7):954-60.
31. Liu D. Trop-2-targeting tetrakis-ranpirnase has potent antitumor activity against triple-negative breast cancer. Molecular Cancer.13(1):53-.
32. Berger S, Lowe P, Tesar M, editors. Fusion protein technologies for biopharmaceuticals: Applications and challenges: Editor Stefan R Schmidt. MAbs; 2015: Taylor & Francis.
33. Silver AB, Leonard EK, Gould JR, Spangler JB. Engineered antibody fusion proteins for targeted disease therapy. Trends in pharmacological sciences. 2021;42(12):1064-81.