Investigation of Resistance to Aminoglycosides and Tetracyclines among Methicillin-Resistant and -Sensitive Staphylococcus isolates in Shiraz, Southwestern Iran

Document Type : Original Research

Authors
1 Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
2 Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
3 Department of Microbiology, Saveh University of Medical Sciences, Saveh, Iran.
4 HIV / AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
Abstract
Background: Methicillin-resistant staphylococci (MRS) are regarded as a global public health threat. Physicians are restricted in their treatment options due to resistance to aminoglycosides and tetracycline derivatives. This study investigated aminoglycoside and tetracycline derivative resistance among Staphylococcus isolates in Shiraz, southwestern Iran.

Materials & Methods: Totally, 113 staphylococcal isolates were recovered from different clinical samples in Nemazee Teaching Hospital from October 2019 to January 2020. Kirby-Bauer disc diffusion method was performed to assess the antimicrobial susceptibility of the isolates against aminoglycoside and tetracycline antibiotics. Aminoglycoside-modifying enzymes (AMEs) and tet genes were investigated among staphylococci isolates using polymerase chain reactions (PCR).

Findings: MRS prevalence among Staphylococcus isolates was 61% (69 of 113). The majority of MRS isolates were obtained from blood (39.1%; 27 of 69) and urine (17.4%; 12 of 69). The highest prevalence of MRS isolates was among emergency room patients (34.8%; 24 of 69). The highest resistance of MRS isolates was against tobramycin (59.4%; 41 of 69) and tetracycline (55.1%; 38 of 69). The prevalence of tetM and aac (6')-Ie-aph (2'') genes was significantly higher among MRS compared with methicillin-sensitive staphylococci (MSS) (87.5% vs 12.5% and 95.6% vs 6.4%, respectively) (p= .001).

Conclusion: The prevalence of MRS isolates, including methicillin-resistant S. aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS), was remarkable in Shiraz as the center of medical services in the southwest of Iran. Furthermore, these MRS isolates were highly resistant to aminoglycosides and tetracyclines. Therefore, antimicrobial stewardship is necessary to address health conditions.

Keywords

Subjects


1. Parte AC. LPSN–List of prokaryotic names with standing in nomenclature (bacterio. net), 20 years on. Int J Syst Evol Microbiol. 2018;68(6):1825-9.
2. Marsilio F, Di Francesco CE, Di Martino B. Coagulase-positive and coagulase-negative staphylococci animal diseases. In: Savini V, editor. Pet-to-man travelling staphylococci: A world in progress. US: Elsevier Science Publishing; 2018, pp. 43-50.
3. Sato'o Y, Aiba Y, Kiga K, Watanabe S, Sasahara T, Hayakawa Y, et al. Optimized universal protocol for electroporation of both coagulase-positive and-negative staphylococci. J Microbiol Methods. 2018;146:25-32.
4. Heilmann C, Ziebuhr W, Becker K. Are coagulase-negative staphylococci virulent? Clin Microbiol Infect. 2019;25(9):1071-80.
5. Adeoye-Isijola M, Olajuyigbe O, Adebola K, Coopoosamy R, Afolayan A. Vancomycin intermediate resistant Staphylococcus aureus in the nasal cavity of asymptomatic individuals: A potential public health challenge. Afr Health Sci. 2020;20(3):1109-17.
6. Asante J, Amoako DG, Abia AL, Somboro AM, Govinden U, Bester LA, et al. Review of clinically and epidemiologically relevant coagulase-negative staphylococci in Africa. Microb Drug Resist. 2020;26(8):951-70.
7. McClure JA, Zaal DeLongchamp J, Conly JM, Zhang K. Novel multiplex PCR assay for detection of chlorhexidine-quaternary ammonium, mupirocin, and methicillin resistance genes, with simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol. 2017;55(6):1857-64.
8. Khan HA, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed. 2015;5(7):509-14.
9. Tkadlec J, Vařeková E, Pantůček R, Doškař J, Růžičková V, Botka T, et al. Characterization of Staphylococcus aureus strains isolated from Czech cystic fibrosis patients: High rate of ribosomal mutation conferring resistance to MLSB antibiotics as a result of long-term and low-dose azithromycin treatment. Microb Drug Resist. 2015;21(4):416-23.
10. Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, Marusza W. Molecular mechanisms of drug resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088.
11. Watkins RR, Holubar M, David MZ. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother. 2019;63(12):10-128.
12. Seyedi-Marghaki F, Kalantar-Neyestanaki D, Saffari F, Hosseini-Nave H, Moradi M. Distribution of aminoglycoside-modifying enzymes and molecular analysis of the coagulase gene in clinical isolates of methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Microb Drug Resist. 2019;25(1):47-53.
13. Epps QJ, Epps KL, Young DC, Zobell JT. State of the art in cystic fibrosis pharmacology—Optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: I. Anti‐methicillin‐resistant Staphylococcus aureus (MRSA) antibiotics. Pediatr Pulmonol. 2020;55(1):33-57.
14. Bourbour S, Beigverdi R, Beheshti M, Jabalameli F, Emaneini M. Identification of major sequence types among aminoglycoside resistant Staphylococcus aureus and Staphylococcus epidermidis strains isolated from clinical samples. Iran J Microbiol. 2022;14(3):305-12.
15. Beigverdi R, Sattari-Maraji A, Jabalameli F, Emaneini M. Prevalence of genes encoding aminoglycoside-modifying enzymes in clinical isolates of Gram-positive cocci in Iran: A systematic review and meta-analysis. Microb Drug Resist. 2020;26(2):126-35.
16. Goudarzi M, Razeghi M, Dadashi M, Miri M, Hashemi A, Amirpour A, et al. Distribution of SCCmec types, tetracycline and aminoglycoside resistance genes in hospital-associated methicillin-resistant Staphylococcus aureus strains. Gene Rep. 2019;16:100454.
17. Al-Saadi DA, Abd Al-Mayahi FS, editors. Antibiogram susceptibility patterns of Staphylococcus aureus harboring of mecA gene and prevalence aminoglycoside modifying enzymes (AMEs) genes in Iraq. IOP Conf Ser Earth Environ Sci. 2021;923(1):1-8.
18. Pal M, Kerorsa GB, Marami LM, Kandi V. Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of Staphylococcus aureus: A comprehensive review. Am J Public Health Res. 2020;8(1):14-21.
19. Lollai S, Ziccheddu M, Duprè I, Piras D. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: Study of the effect of gene content on resistance. J Appl Microbiol. 2016;121(4):941-51.
20. Khoramrooz SS, Dolatabad SA, Dolatabad FM, Marashifard M, Mirzaii M, Dabiri H, et al. Detection of tetracycline resistance genes, aminoglycoside modifying enzymes, and coagulase gene typing of clinical isolates of Staphylococcus aureus in the southwest of Iran. Iran J Basic Med Sci. 2017;20(8):912-9.
21. Garoy EY, Gebreab YB, Achila OO, Tekeste DG, Kesete R, Ghirmay R, et al. Methicillin-resistant Staphylococcus aureus (MRSA): Prevalence and antimicrobial sensitivity pattern among patients—A multicenter study in Asmara, Eritrea. Can J Infect Dis Med Microbiol. 2019;2019.
22. Clinical and Laboratory Standards Institute. CLSI supplement M100: Performance standards for antimicrobial susceptibility testing. 31st ed. Clinical and Laboratory Standards Intitute; 2021.
23. Zomorodi AR, Mohseni N, Hafiz M, Nikoueian H, Hashemitabar G, Salimizand H, et al. Investigation of mobile colistin resistance (mcr) genes among carbapenem resistance Pseudomonas aeruginosa isolates from bovine mastitis in Mashhad, Iran. Gene Rep. 2022;29:101695.
24. Adwan K. Fast DNA isolation and PCR protocols for detection of methicillin-resistant staphylococci. Folia Microbiol. 2014;59:5-8.
25. Motamedifar M, Ebrahim-Saraie HS, Alfatemi SM, Zalipour M, Kaveh M, Khoshkharam-Roodmajani H. Frequency of the toxic shock syndrome toxin-1 gene in methicillin-susceptible and-resistant Staphylococcus aureus isolates from teaching hospitals in Shiraz, Iran. Rev Soc Bras Med Trop. 2015;48(1):90-3.
26. Asokan GV, Ramadhan T, Ahmed E, Sanad H. WHO global priority pathogens list: A bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Med J. 2019;34(3):184-93.
27. Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, et al. Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics. 2021;10(2):131.
28. Bahmani N, Kalantar E, Torabi V. Survey of methicillin-resistant strains of staphylococci from neonatal septicemia for mecA gene. Life Sci J. 2013;10(10s):303-6.
29. Abbasi Montazeri E, Khosravi AD, Khazaei S, Sabbagh A. Prevalence of methicillin resistance and superantigenic toxins in Staphylococcus aureus strains isolated from patients with cancer. BMC Microbiol. 2021;21(1):1-9.
30. Singh S, Dhawan B, Kapil A, Kabra S, Suri A, Sreenivas V, et al. Coagulase-negative staphylococci causing blood stream infection at an Indian tertiary care hospital: Prevalence, antimicrobial resistance, and molecular characterisation. Indian J Med Microbiol. 2016;34(4):500-5.
31. Gergova RT, Tsitou VM, Mitov IG. Molecular-genetic method for fast direct detection of Staphylococcus aureus and methicillin resistance in blood cultures and punctures. Folia Microbiol. 2019;61(4):559-65.
32. Asante J, Hetsa BA, Amoako DG, Abia AL, Bester LA, Essack SY. Multidrug-resistant coagulase-negative staphylococci isolated from bloodstream in the uMgungundlovu district of KwaZulu-Natal province in south Africa: Emerging pathogens. Antibiotics. 2021;10(2):198.
33. Shariati A, Dadashi M, Chegini Z, van Belkum A, Mirzaii M, Khoramrooz SS, et al. The global prevalence of daptomycin, tigecycline, quinupristin/dalfopristin, and linezolid-resistant Staphylococcus aureus and coagulase–negative staphylococci strains: A systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9(1):1-20.
34. Perumal N, Murugesan S, Krishnan P. Distribution of genes encoding aminoglycoside-modifying enzymes among clinical isolates of methicillin-resistant staphylococci. Indian J Med Microbiol. 2016;34(3):350-2.
35. Ogefere HO, Umaru G, Ibadin EE, Omoregie R. Prevalence of methicillin-resistant staphylococci among apparently healthy students attending a tertiary institution in Benin city, Nigeria. Nig J Basic Appl Sci. 2019;27(1):114-21.
36. Xu S, Guo D, Liu X, Jin X, Shi Y, Wang Y, et al. Ocular pathogens and antibiotic resistance in microbial keratitis over three years in Harbin, northeast China. Acta Ophthalmol. 2021;99(8):909-15.
37. Díaz MC, Ríos E, Rodríguez-Avial I, Simaluiza RJ, Picazo JJ, Culebras E. In-vitro activity of several antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: Potency of plazomicin alone and in combination with other agents. Int J Antimicrob Agents. 2017;50(2):191-6.
38. Mahdiyoun SM, Kazemian H, Ahanjan M, Houri H, Goudarzi M. Frequency of aminoglycoside-resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitalized patients. Jundishapur J Microbiol. 2016;9(8):e35052.
39. Xu Z, Liu S, Chen L, Liu Y, Tan L, Shen J, et al. Antimicrobial resistance and molecular characterization of methicillin-resistant coagulase-negative staphylococci from public shared bicycles in Tianjin, China. J Glob Antimicrob Resist. 2019;19:231-5.
40. Li Y, Lin J, Li L, Cai W, Ye J, He S, et al. Methicillin-resistant coagulase-negative staphylococci carriage is a protective factor of methicillin-resistant Staphylococcus aureus nasal colonization in HIV-infected patients: A cross-sectional study. Can J Infect Dis Med Microbiol. 2021;2021.
41. Ong ML, Ho WY, Ng WW, Chew CH. High prevalence of tetM as compared to tetK amongst methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitals in Perak, Malaysia. Jundishapur J Microbiol. 2017;10(6):e13935.
42. Shrief R, El-Kholy RM, Rizk MA, Zaki ME. Prevalence of tetracycline resistant genes in Staphylococcus aureus isolates from surgical site infections Egypt. Biosci Biotechnol Res Asia. 2019;16(2):221-8.
43. Emaneini M, Bigverdi R, Kalantar D, Soroush S, Jabalameli F, Khoshgnab BN, et al. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Ann Burn Fire Disasters. 2013;26(2):76-80.
44. Poulsen AB, Skov R, Pallesen LV. Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA detection kit. J Antimicrob Chemother. 2003;51(2):419-21.