1. Kaya E, Grassi L, Benedetti A, Maisetta G, Pileggi C, Di Luca M, et al. In vitro interaction of Pseudomonas aeruginosa biofilms with human peripheral blood mononuclear cells. Front Cell Infect Microbiol. 2020;10:187.
2. Zhou H, Yang Y, Shang W, Rao Y, Chen J, Peng H, et al. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microb Biotechnol. 2022;15(6):1910-21.
3. Thi MT, Wibowo D, Rehm BH. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020;21(22):8671.
4. Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens. 2022;11(3):300.
5. Nickzad A, Deziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development: An approach for control? Lett Appl Microbiol. 2014;58(5):447-53.
6. Shatila F, Diallo MM, Sahar U, Ozdemir G, Yalcin HT. The effect of carbon, nitrogen, and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Arch Microbiol. 2020;202(6):1407-17.
7. Chong H, Li Q. Microbial production of rhamnolipids: Opportunities, challenges, and strategies. Microb Cell Fact. 2017;16(1):137.
8. Schmidberger A, Henkel M, Hausmann R, Schwartz T. Expression of genes involved in rhamnolipid synthesis in Pseudomonas aeruginosa PAO1 in a bioreactor cultivation. Appl Microbiol Biotechnol. 2013;97(13):5779-91.
9. Reis RS, Pereira AG, Neves BC, Freire DM. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa--A review. Bioresour Technol. 2011;102(11):6377-84.
10. Othman Ahmad R, Ahmadi A, Bahmani N, Taherpour A. Application of WHONET in the analysis of Pseudomonas aeruginosa resistance to imipenem and meropenem. Iran J Med Microbiol. 2023;17(5):606-12.
11. Bernier SP, Ha DG, Khan W, Merritt JH, O'Toole GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol. 2011;162(7):680-8.
12. Köhler T, Curty LK, Barja F, Van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 2000;182(21):5990-6.
13. Caiazza NC, Shanks RM, O'Toole GA. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol. 2005;187(21):7351-61.
14. Mishra I, Fatima T, Egamberdieva D, Arora NK. Novel bioformulations developed from Pseudomonas putida BSP9 and its biosurfactant for growth promotion of Brassica juncea (L.). Plants. 2020;9(10):1349.
15. Karballaei Mirzahosseini H, Hadadi-Fishani M, Morshedi K, Khaledi A. Meta-analysis of biofilm formation, antibiotic resistance pattern, and biofilm-related genes in Pseudomonas aeruginosa isolated from clinical samples. Microb Drug Resist. 2020;26(7):815-24.
16. Yousefpour Z, Davarzani F, Owlia P. Evaluating of the effects of sub-MIC concentrations of gentamicin on biofilm formation in clinical isolates of Pseudomonas aeruginosa. Iran J Pathol. 2021;16(4):403-10.
17. Yakout MA, Abdelwahab IA. Diabetic foot ulcer infections and Pseudomonas aeruginosa biofilm production during the COVID-19 pandemic. J Pure Appl Microbiol. 2022;16(1):138-46.
18. Shatti HH, Al-Saeed WM, Nader MI. Effect biofilm formation in Pseudomonas aeruginosa resistance to antibiotic. Mustansiriya Med J. 2022;21(1):13-7.
19. Davarzani F, Saidi N, Besharati S, Saderi H, Rasooli I, Owlia P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iran J Public Health. 2021;50(2):341-9.
20. Abdelraheem WM, Abdelkader AE, Mohamed ES, Mohammed MS. Detection of biofilm formation and assessment of biofilm genes expression in different Pseudomonas aeruginosa clinical isolates. Meta Gene. 2020;23:100646.
21. Deziel E, Lepine F, Milot S, Villemur R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta. 2000;1485(2-3):145-52.
22. Soberon-Chavez G, Lepine F, Deziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2005;68(6):718-25.
23. Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics. 2007;8:1-11.
24. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: Effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol. 2000;66(8):3262-8.
25. Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol. 2007;189(6):2531-9.
26. Davey ME, Caiazza NC, O'Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003;185(3):1027-36.
27. Abdel-Mawgoud AM, Lepine F, Deziel E. Rhamnolipids: Diversity of structures, microbial origins, and roles. Appl Microbiol Biotechnol. 2010;86(5):1323-36.
28. Ron EZ, Rosenberg E. Natural roles of biosurfactants. Environ Microbiol. 2001;3(4):229-36.
29. Espinosa-Urgel M. Resident parking only: Rhamnolipids maintain fluid channels in biofilms. J Bacteriol. 2003;185(3):699-700.
30. Christova N, Tuleva B, Cohenb R, Ivanova G, Stoevd G, Stoilova-Disheva M, et al. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Z Naturforsch C. 2011;66(7-8):394-402.
31. Moussa T, Mohamed M, Samak N. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz J Chem Eng. 2014;31:867-80.