Volume 4, Issue 2 (2018)                   IEM 2018, 4(2): 41-46 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moosavian M, Moradzadeh ‎ M, Ghadri H. Typing of fliC Gene in Pseudomonas aeruginosa Metallo-Beta-‎Lactamase Producer Strains Isolated from Clinical Specimen. IEM. 2018; 4 (2) :41-46
URL: http://iem.modares.ac.ir/article-4-19186-en.html
1- ‎Infectious & Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2- Infectious & Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur ‎University of Medical Sciences, Ahvaz, Iran , mi.1366@yahoo.com
3- Microbiology Department, Medical Sciences Faculty, Ahvaz Jundishapur University of Medical ‎Sciences, Ahvaz, Iran
Abstract:   (5538 Views)
Aims: Carbapenem resistant Pseudomonas aeruginosa resulting from metallo-β-lactamases (MBLs) has been reported to be an important cause of nosocomial infection and is a serious therapeutic problem worldwide. The aim of the present study was to determine the fliC (flagellin) typing and their prevalence rate in P. aeruginosa producing MBL isolated from clinical specimens in Ahvaz, Iran.
Materials and Methods: In the present experimental study, isolates were related to the previous study collected from hospitalized patients in Golestan and Imam Khomeini, in Ahvaz, Iran, during 9 months in 2012. Strains were identified using microscopic and biochemical tests. Then, the susceptibility antibiotic tests were performed on all isolates. Imipenem (IMP) and IMP+EDTA (IMP/IMP+EDTA) combined disk phenotypic test was performed for detection of MBL producing strains that were resistant to IMP. Finally, PCR was performed to detect fliC genes in IMP resistant strains.
Findings: Out of 100 examined isolates, 47 isolates were resistant to IMP. Among 47 imipenem resistant strains, 41 strains were MBL producers. Eighty-three percent of the strains contained fliC gene that 48 isolates had type A and 32 isolates had type B.
Conclusion: Eighty-three percent of the specimens have flagellin (fliC) gene, which out of them, 48 strains of P. aeruginosa (60.0%) have type A flagellin and 32 strains (40.0%) have type B. Twenty-four of the 41 strains of MBL producer (60.0%) have type A and 16 strains (40.0%) have type B and only one strains lacks the flagellin gene, so the flagella plays a significant role in the bacterial virulence.
Full-Text [PDF 509 kb]   (902 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2018/04/20 | Accepted: 2018/06/20 | Published: 2018/06/20

1. Gellatly SL, Hancock RE. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog Dis. ‎‎2013;67(3):159-73.‎ [Link] [DOI:10.1111/2049-632X.12033]
2. Chaudhari V, Gunjal S, Mehta M. Antibiotic resistance patterns of Pseudomonas aeruginosa in a tertiary care ‎hospital in Central India. Int J Med Sci Public Health. 2013;2(2):386-9.‎ [Link] [DOI:10.5455/ijmsph.2013.2.400-403]
3. Arvanitidou M, Katikaridou E, Douboyas J, Tsakris A. Prognostic factors for nosocomial bacteraemia outcome: A ‎prospective study in a Greek teaching hospital. J Hosp Infect. 2005;61(3):219-24.‎ [Link] [DOI:10.1016/j.jhin.2005.03.006]
4. Lillehoj EP, Kim BT, Kim KC. Identification of Pseudomonas aeruginosa flagellin as an adhesion for Muc1 mucin. Am ‎J Physiol Lung Cell Mol Physiol. 2002;282(4):L751-6.‎ [Link]
5. Faezi S, Bahrmand AR, Mahdavi M, Siadat SD, Sardari S, Nikokar I, et al. Preparation of Pseudomonas aeruginosa ‎alginate-flagellin immunoconjugate. Biologicals. 2017;47:11-7.‎ [Link]
6. Ramos HC, Rumbo M, Sirard JC. Bacterial flagellins: Mediators of pathogenicity and host immune responses in ‎mucosa. Trends Microbiol. 2004;12(11):509-17.‎ [Link] [DOI:10.1016/j.tim.2004.09.002]
7. Winstanley C, Coulson MA, Wepner B, Morgan JA, Hart CA. Flagellin gene and protein variation amongst clinical ‎isolates of Pseudomonas aeruginosa. Microbiology. 1996;142(Pt 8):2145-51.‎ [Link]
8. Arora SK, Wolfgang MC, Lory S, Ramphal R. Sequence polymorphism in the glycosylation island and flagellins of ‎Pseudomonas aeruginosa. J Bacteriol. 2004;186(7):2115-22.‎ [Link] [DOI:10.1128/JB.186.7.2115-2122.2004]
9. Montie TC, Craven RC, Holder IA. Flagellar preparations from Pseudomonas aeruginosa: Isolation and ‎characterization. Infect. Immun. 1982; 35(1):281-8.‎ [Link]
10. Holder IA. Pseudomonas immunotherapy: A historical overview. Vaccine. 2004;22(7):831-9.‎ [Link] [DOI:10.1016/j.vaccine.2003.11.028]
11. Campodónico VL, Llosa NJ, Grout M, Döring G, Maira-Litrán T, Pier GB. Evaluation of flagella and flagellin of ‎Pseudomonas aeruginosa as vaccines. Infect Immun. 2010;78(2):746-55.‎ [Link] [DOI:10.1128/IAI.00806-09]
12. Bahar MA, Jamali S, Samadikuchaksaraei A. Imipenem-resistant Pseudomonas aeruginosa strains carry metallo-‎beta-lactamase gene bla (VIM) in a level I Iranian burn hospital. Burns. 2010;36(6):826-30.‎ [Link] [DOI:10.1016/j.burns.2009.10.011]
13. Pitout JD, Gregson DB, Poirel L, McClure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing ‎metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129-35.‎ [Link] [DOI:10.1128/JCM.43.7.3129-3135.2005]
14. Helfand MS, Bonomo RA. Current challenges in antimicrobial chemotherapy: The impact of extended-spectrum ‎beta-lactamases and metallo-beta-lactamases on the treatment of resistant Gram-negative pathogens. Curr Opin ‎Pharmacol. 2005;5(5):452-8.‎ [Link]
15. King DT, Sobhanifar S, Strynadka NCJ. The mechanisms of resistance to β-lactam antibiotics. In: Gotte M, Berghuis ‎A, Matlashewski G, Wainberg M, Sheppard D, editors. Handbook of antimicrobial resistance. New York: Springer; 2018. ‎pp. 177-201.‎ [Link]
16. Acharya M, Joshi PR, Thapa K, Aryal R, Kakshapati T, Sharma S. Detection of metallo-β-lactamases-encoding genes ‎among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital, Kathmandu, Nepal. BMC Res Notes. ‎‎2017;10:718.‎ [Link] [DOI:10.1186/s13104-017-3068-9]
17. Simon M, Richert K, Pfennigwerth N, Pfeifer Y, Reischl U, Gatermann S, et al. Carbapenemase detection using the ‎β-CARBA test: Influence of test conditions on performance and comparison with the RAPIDEC CarbaNP assay. J ‎Microbiol Methods. 2018;147:17-9.‎ [Link]
18. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. ‎‎2010;54(3):969-76.‎ [Link] [DOI:10.1128/AAC.01009-09]
19. Bogiel T, Deptuła A, Gospodarek E. Evaluation of different methods for detection of metallo-beta-lactamases in ‎Pseudomonas aeruginosa clinical isolates. Pol J Microbiol. 2010;59(1):45-8.‎ [Link]
20. Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosa strains producing metallo beta lactamases from ‎infections in burned patients and identification of bla IMP and bla VIM genes by PCR. Iran J Med Microbiol. ‎‎2007;1(1):23-31. [Persian]‎ [Link]
21. Wikler MA, Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility ‎testing: Sixteenth informational supplement, volume 26. Wayne: Clinical and Laboratory Standards Institute; 2006.‎ [Link]
22. Moosavian M, Rahimzadeh M. Molecular detection of metallo-β-lactamase genes, bla IMP-1, bla VIM-2 and bla ‎SPM-1 in imipenem resistant Pseudomonas aeruginosa isolated from clinical specimens in teaching hospitals of Ahvaz, ‎Iran. Iran J Microbiol. 2015;7(1):2-6.‎ [Link]
23. Jeschke MG, Pinto R, Kraft R, Nathens AB, Finnerty CC, Gamelli RL, et al. Morbidity and survival probability in burn ‎patients in modern burn care. Crit Care Med. 2015;43(4):808-15.‎ [Link]
24. Manoharan A, Chatterjee S, Mathai D, SARI Study Group. Detection and characterization of metallo beta lactamases ‎producing Pseudomonas aeruginosa. Indian J Med Microbiol. 2010;28(3):241-4.‎ [Link] [DOI:10.4103/0255-0857.66486]
25. Doosti M, Ramazani A, Garshasbi M. Identification and characterization of metallo-β-lactamases producing ‎Pseudomonas aeruginosa clinical isolates in university hospital from Zanjan province, Iran. Iran Biomed J. ‎‎2013;17(3):129-33.‎ [Link]
26. Aghamiri S, Amirmozafari N, Fallah Mehrabadi J, Fouladtan B, Samadi Kafil H. Antibiotic resistance pattern and ‎evaluation of metallo-beta lactamase genes including bla-IMP and bla-VIM types in Pseudomonas aeruginosa isolated ‎from patients in Tehran hospitals. Int Sch Res Not Microbiol. 2014;2014:941507.‎ [Link]
27. Akya A, Salimi A, Nomanpour B, Ahmadi K. Prevalence and clonal dissemination of metallo-beta-lactamase-‎producing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microbiol. 2015;8(7):e20980.‎ [Link]
28. Jácome PR, Alves LR, Cabral AB, Lopes AC, Maciel MA. Phenotypic and molecular characterization of antimicrobial ‎resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. ‎Rev Soc Bras Med Trop. 2012;45(6):707-12.‎ [Link] [DOI:10.1590/S0037-86822012000600010]
29. Hong JS, Kim JO, Lee H, Bae IK, Jeong SH, Lee K. Characteristics of metallo-β-lactamase-producing Pseudomonas ‎aeruginosa in Korea. Infect Chemother. 2015;47(1):33-40.‎ [Link] [DOI:10.3947/ic.2015.47.1.33]
30. Nikbin VS, Aslani MM, Sharafi Z, Hashemipour M, Shahcheraghi F, Ebrahimipour GH. Molecular identification and ‎detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran J ‎Microbiol. 2012;4(3):118-23.‎ [Link]
31. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of ‎Pseudomonas aeruginosa ‎infections. Drugs. 2007;67(3):351-68.‎ [Link] [DOI:10.2165/00003495-200767030-00003]
32. Faezi S, Sattari M, Mahdavi M, Roudkenar MH. Passive immunisation against Pseudomonas aeruginosa ‎recombinant flagellin in an experimental model of burn wound sepsis. Burns. 2011;37(5):865-72.‎ [Link] [DOI:10.1016/j.burns.2010.12.003]
33. Otter JA, Yezli S, French GL. The role played by contaminated surfaces in the transmission of nosocomial ‎pathogens. Infect Control Hosp Epidemiol. 2011;32(7):687-99.‎ [Link] [DOI:10.1086/660363]
34. Döring G, Meisner C, Stern M, Flagella Vaccine Trial Study Group. A double-blind randomized placebo-controlled ‎phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc Natl Acad Sci U S A. ‎‎2007;104(26):11020-5.‎ [Link] [DOI:10.1073/pnas.0702403104]
35. Goudarzi G, Sattari M, Roudkenar MH, Montajabi Niyat M, Zavaran Hosseini A, Mosavi Hosseini K. Cloning, ‎expression, purification, and characterization of recombinant flagellin isolated from Pseudomonas aeruginosa. ‎Biotechnol Lett. 2009;31(9):1353-60.‎ [Link] [DOI:10.1007/s10529-009-0026-1]
36. Brimer CD, Montie TC. Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of ‎Pseudomonas aeruginosa a-Type strains. J Bacteriol. 1998;180(12):3209-17.‎ [Link]
37. Verma A, Schirm M, Arora SK, Thibault P, Logan SM, Ramphal R. Glycosylation of b-Type flagellin of Pseudomonas ‎aeruginosa: Structural and genetic basis. J Bacteriol. 2006;188(12):4395-403.‎ [Link] [DOI:10.1128/JB.01642-05]
38. Delavari S, Sohrabi M, Ardestani MS, Faezi S, Tebianian M, Taghizadeh M, et al. Pseudomonas aeruginosa flagellin ‎as an adjuvant: Superiority of a conjugated form of flagellin versus a mixture with a human immunodeficiency virus ‎type 1 vaccine candidate in the induction of immune responses. J Med Microbiol. 2015;64(11):1361-8.‎ [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.