Volume 4, Issue 2 (2018)                   IEM 2018, 4(2): 47-51 | Back to browse issues page

XML Print

1- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran ‎
2- Microbiology & Microbial Biotechnology Department,‎‏ ‏Life Sciences & Biotechnology Faculty, Shahid ‎Beheshti University, Tehran, Iran
3- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
4- Medical Bacteriology Department of Pasteur Institute of Iran, Tehran, Iran
Abstract:   (5331 Views)
Aims: Nowadays, treatment of bacterial infections is one of the most important challenges in the world. Medicinal plants offer a great hope to overcome these needs because of their chemical diversity and their significant role in the drug development. The aim of this study was to evaluate the in vitro antibacterial activity of the thyme (Thymus vulgaris) essential oil against Mycobacterium tuberculosis.
Materials and Methods: In this experimental study, thyme herb plants were collected and thyme essential oil was extracted. The Minimum Inhibitory Concentration (MICs) tests were performed to determine the antimicrobial activity of Thymus plant against the first (Isoniazid, Rifampicin, Ethambutol) and second (Cycloserine, Streptomycin, Kanamycin) drug antibiotics of mycobacterium. Data were analyzed by SPSS 21 software, using one-way ANOVA test.
Findings: The MICs for Isoniazid, Ethambutol, Streptomycin and Cycloserine were less than 10µg/ml and the MIC values for Rifampicin and Kanamycin were 40µg/ml. The limits of minimal inhibitory concentration of essential oil was between 0.5-40µg/ml (p<0.05).
Conclusion: Thyme essential oil has antibacterial activity against Mycobacterium tuberclusis.
Full-Text [PDF 421 kb]   (1379 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2018/03/16 | Accepted: 2018/05/19 | Published: 2018/06/20

1. Gemechu A, Giday M, Worku A, Ameni G. In vitro anti-mycobacterial activity of selected medicinal plants ‎against Mycobacterium tuberculosis and Mycobacterium bovis strains. BMC Complement Altern Med. ‎‎2013;13:291.‎ [Link] [DOI:10.1186/1472-6882-13-291]
2. Cardona PJ. Pathogenesis of tuberculosis and other mycobacteriosis. Enferm Infecc Microbiol Clin. ‎‎2018;36(1):38-46. [English-Spanish]‎ [Link]
3. World Health Organization. Global tuberculosis control 2009, epidemiology, strategy, financing ‎‎[Internet]. Geneva: World Health Organization; 2009 [cited 2016 Feb 17]. Available from: ‎https://reliefweb.int/sites/reliefweb.int/files/resources/878BDA5E2504C9F449257584001B5E60-‎who_mar2009.pdf.‎ [Link]
4. Higuchi CT, Sannomiya M, Pavan FR, Leite SRA, Sato DN, Franzblau SG, et al. Byrsonima fagifolia ‎niedenzu apolar compounds with antitubercular activity. Evid Based Complement Altern Med. ‎‎2011;2011:128349.‎ [Link]
5. Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, Katoch VM, et al. Anti-tuberculosis activity of selected ‎medicinal plants against multi-drug resistant mycobacterium tuberculosis isolates. Indian J Med Res. ‎‎2010;131:809-13.‎ [Link]
6. Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol. 2012;7:353-84.‎ [Link] [DOI:10.1146/annurev-pathol-011811-132458]
7. Guzman JD, Gupta A, Evangelopoulos D, Basavannacharya C, Pabon LC, Plazas EA, et al. Anti-tubercular ‎screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ‎ligase of Mycobacterium tuberculosis. J Antimicrob Chemother. 2010;65(10):2101-7.‎ [Link]
8. Sakamoto K. The pathology of Mycobacterium tuberculosis infection. Vet Pathol. 2012;49(3):423-39.‎ [Link] [DOI:10.1177/0300985811429313]
9. Smith T, Wolff KA, Nguyen L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr ‎Top Microbiol Immunol. 2013;374:53-80.‎ [Link]
10. Victor TC, Jordaan AM, Van Rie A, Van Der Spuy GD, Richardson M, Van Helden PD, et al. Detection of ‎mutations in drug resistance genes of Mycobacterium tuberculosis by a dot-blot hybridization strategy. Tuber ‎Lung Dis. 1999;79(6):343-8.‎ [Link]
11. Bhembe NL, Nwodo UU, Govender S, Hayes C, Ndip RN, Okoh AI, et al. Molecular detection and ‎characterization of resistant genes in Mycobacterium tuberculosis complex from DNA isolated from ‎tuberculosis patients in the Eastern Cape province South Africa. BMC Infect Dis. 2014;14:479.‎ [Link]
12. Mishra R, Shukla P, Huang W, Hu N. Gene mutations in Mycobacterium tuberculosis: Multidrug-resistant ‎TB as an emerging global public health crisis. Tuberculosis (Edinb). 2015;95(1):1-5.‎ [Link] [DOI:10.1016/j.tube.2014.08.012]
13. Volokhov DV, Chizhikov VE, Denkin S, Zhang Y. Molecular detection of drug-resistant Mycobacterium ‎tuberculosis with a scanning-frame oligonucleotide microarray. Methods Mol Biol. 2009;465:395-417.‎ [Link] [DOI:10.1007/978-1-59745-207-6_26]
14. Nemati, Z, Barzegar R, Khosravinezhad M, Talebi E, Safaei HR. Chemical composition and antioxidant ‎activity of Shirazi Thymus vulgaris essential oil. Adv Herb Med. 2017;3(2):26-32.‎ [Link]
15. Özcan M, Chalchat JC. Aroma profile of Thymus vulgaris L. growing wild in Turkey. Bulg J Plant Physiol. ‎‎2004;30(3-4):68-73.‎ [Link]
16. Hudaib M, Aburjai T. Volatile components of Thymus vulgaris L. from wild-growing and cultivated ‎plants in Jordan. Flavour Fragr J. 2007;22(4):322-7.‎ [Link] [DOI:10.1002/ffj.1800]
17. Fani M, Kohanteb J. In vitro antimicrobial activity of thymus vulgaris essential oil against major oral ‎pathogens. J Evid Based Complementary Altern Med. 2017;22(4):660-6.‎ [Link] [DOI:10.1177/2156587217700772]
18. Oliveira JR, De Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, et al. Thymus ‎vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and ‎genotoxicity. Arch Oral Biol. 2017;82:271-9.‎ [Link]
19. Parsons LM, Salfinger M, Clobridge A, Dormandy J, Mirabello L, Polletta VL, et al. Phenotypic and ‎molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ‎ethambutol. Antimicrob Agents Chemother. 2005;49(6):2218-25. ‎ [Link]
20. Miladi, H, Slama RB, Mili D, Zouari S, Bakhrouf A, Ammar E. Essential oil of Thymus vulgaris L. ‎and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant ‎properties and antibacterial activities against foodborne pathogens. Nat Sci. 2013;5(6):729-39. ‎ [Link]
21. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, et al. Advances in techniques of ‎testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control ‎programmes. Bull World Health Organ. 1969;41(1):21-43.‎ [Link]
22. Izadi N, Derakhshan M, Bahrami Taleghanki H, Amel Jamehdar S, Akbari Eidgahi MR, Ghazvini K. ‎Molecular characteristics of rifampin resistance among mycobacterium tuberculosis strains isolated in ‎Northeast of Iran. Int J Anal Pharm Biomed Sci. 2015;4(3):95-102.‎ [Link]
23. Al-Bayati FA. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential ‎oils and methanol extracts. J Ethnopharmacol. 2008;116(3):403-6.‎ [Link] [DOI:10.1016/j.jep.2007.12.003]
24. Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia AT, Horhat FG. Thymus vulgaris essential oil: Chemical ‎composition and antimicrobial activity. J Med Life. 2014;7(Spec Iss 3):56-60.‎ [Link]
25. Juven BJ, Kanner J, Schved F, Weisslowicz H. Factors that interact with the antibacterial action of thyme ‎essential oil and its active constituents. J Appl Bacteriol. 1994;76(6):626-31.‎ [Link] [DOI:10.1111/j.1365-2672.1994.tb01661.x]
26. Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb ‎Physiol. 2012;60:263-324.‎ [Link]
27. Druszczyńska M, Kowalewicz-Kulbat M, Fol M, Włodarczyk M, Rudnicka W. Latent M. tuberculosis ‎infection--pathogenesis, diagnosis, treatment and prevention strategies. Pol J Microbiol. 2012;61(1):3-10.‎ [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.