Volume 9, Issue 3 (2023)                   IEM 2023, 9(3): 239-248 | Back to browse issues page


XML Print


1- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
2- Department of Medical Parasitology and Mycology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran , dr.zahra-rafat@gums.ac.ir
3- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
4- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, Iran
5- Department of Dental Prosthesis, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
6- Student research committee, Anzali International Medical Campus, Guilan University of Medical Sciences, Guilan, Iran
Abstract:   (1120 Views)
Background: The use of plant extracts or their compounds as antimicrobial agents for oral infections worldwide represents that herbal medicines could be used as an effective alternative method in oral health care. This study aimed to evaluate the antifungal and antibacterial effects of five traditional medicinal plant extracts on standard and clinical strains of bacteria and fungi causing dental caries.
Materials & Methods: Aqueous and methanolic extracts of Zataria multiflora, Lawsonia alba, Zizyphus spina-christi, Myrtus communis, and Citrus aurantium were prepared using maceration method. The minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) of the prepared extracts were evaluated against bacterial (Streptococcus sanguinis and S. mutans) and fungal (Candida albicans, C. krusei, and C. tropicalis) isolates using broth microdilution method.  
Findings: Aqueous extracts of the studied plants showed no antimicrobial effects on the studied microorganisms, except M. communis and C. aurantium. The results indicated the antimicrobial potency of the methanolic extract of M. communis (MIC range =2 to 64 µg/mL) against all the studied microorganisms, followed by Z. multiflora (MIC range = 512-2048 µg/mL), L. alba (MIC range = 1024-2048 µg/mL), C. aurantium (MIC range = 1024-4096 µg/mL), and Z. spina-christi (MIC range=2048- ˃4096 μg/mL).  Also, the lowest MMCs against the studied strains were related to the methanolic extract of M. communis (MMC range = 16-512 µg/mL).
Conclusion: The results showed remarkable antimicrobial effects of M. communis extract, which could be a suitable alternative to chemical mouthwashes to prevent and control oral infections. 
Full-Text [PDF 491 kb]   (498 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2023/06/27 | Accepted: 2023/09/24 | Published: 2023/10/18

References
1. 1- Chen X, Daliri EB, Kim N, Kim JR, Yoo D, Oh DH. Microbial etiology and prevention of dental caries: Exploiting natural products to inhibit cariogenic biofilms. Pathogens. 2020;9(7):569. [DOI:10.3390/pathogens9070569] [PMID] []
2. Nomura R, Matayoshi S, Otsugu M, Kitamura T, Teramoto N, Nakano K. Contribution of severe dental caries induced by Streptococcus mutans to the pathogenicity of infective endocarditis. Infect Immun. 2020;88(7):e00897-19. [DOI:10.1128/IAI.00897-19] [PMID] []
3. Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499-515. [DOI:10.1007/s10096-013-1993-7] [PMID] []
4. Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018;13(8):915-32. [DOI:10.2217/fmb-2018-0043] [PMID] []
5. Sato T, Kishi M, Suda M, Sakata K, Shimoda H, Miura H, et al. Prevalence of Candida albicans and non-albicans on the tongue dorsa of elderly people living in a post-disaster area: A cross-sectional survey. BMC Oral Health. 2017;17(1):1-10. [DOI:10.1186/s12903-017-0342-0] [PMID] []
6. Kamali Sarvestani H, Mahmoudi S, Afarinesh Khaki P, Ansari S, Ghaderkhani S, Roostaei D, et al. Epidemiology, risk factors, species distribution, and antifungal susceptibility of candidemia among hospitalized patients with COVID-19. Curr Med Mycol. 2021;7(4):12-8. [DOI:10.18502/cmm.7.4.8406] [PMID] []
7. Rafat Z, Ramandi A, Khaki PA, Ansari S, Ghaderkhani S, Haidar H, et al. Fungal and bacterial co-infections of the respiratory tract among patients with COVID-19 hospitalized in intensive care units. Gene Rep. 2022;27:101588. [DOI:10.1016/j.genrep.2022.101588] [PMID] []
8. Featherstone JD. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent Oral Epidemiol. 1999;27(1):31-40. [DOI:10.1111/j.1600-0528.1999.tb01989.x] [PMID]
9. Dennison JB, Straffon LH, Smith RC. Effectiveness of sealant treatment over five years in an insured population. J Am Dent Assoc. 2000;131(5):597-605. [DOI:10.14219/jada.archive.2000.0233] [PMID]
10. Alanen P, Isokangas P, Gutmann K. Xylitol candies in caries prevention: Results of a field study in Estonian children. Community Dent Oral Epidemiol. 2000;28(3):218-24. [DOI:10.1034/j.1600-0528.2000.280308.x] [PMID]
11. Emilson CG. Potential efficacy of chlorhexidine against mutans streptococci and human dental caries. Dent Res. 1994;73(3):682-91. [DOI:10.1177/00220345940730031401] [PMID]
12. Wang Y, Mei L, Gong L, Li J, He S, Ji Y, et al. Remineralization of early enamel caries lesions using different bioactive elements containing toothpastes: An in vitro study. Technol Health Care. 2016;24(5):701-11. [DOI:10.3233/THC-161221] [PMID]
13. Everett ET. Fluoride's effects on the formation of teeth and bones, and the influence of genetics. J Dent Res. 2011;90(5):552-60. [DOI:10.1177/0022034510384626] [PMID] []
14. Karthikeyan R, Amaechi BT, Rawls HR, Lee VA. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch Oral Biol. 2011;56(5):437-45. [DOI:10.1016/j.archoralbio.2010.10.022] [PMID] []
15. Ferrazzano GF, Scioscia E, Sateriale D, Pastore G, Colicchio R, Pagliuca C, et al. In vitro antibacterial activity of pomegranate juice and peel extracts on cariogenic bacteria. BioMed Res Int. 2017;2017(1). [DOI:10.1155/2017/2152749] [PMID] []
16. Aleksic V, Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res. 2014;169(4):240-54. [DOI:10.1016/j.micres.2013.10.003] [PMID]
17. Ferdous AJ, Islam SN, Faroque AB, Ahsan M. In vitro testing of the leaf extracts of Lawsonia alba for antimicrobial properties. Pak J Pharm Sci. 1990;3(2):75-9.
18. Shahat AA, Pieters L, Apers S, Nazeif NM, Abdel-Azim NS, Berghe DV, et al. Chemical and biological investigations on Zizyphus spina-christi L. Phytother Res. 2001;15(7):593-7. [DOI:10.1002/ptr.883] [PMID]
19. Sajed H, Sahebkar A, Iranshahi M. Zataria multiflora Boiss. (Shirazi thyme)- An ancient condiment with modern pharmaceutical uses. J Ethnopharmacol. 2013;145(3):686-98. [DOI:10.1016/j.jep.2012.12.018] [PMID]
20. Seidel V. Initial and bulk extraction of natural products isolation. In: Sarker S, Nahar L (eds). Natural products isolation (methods in molecular biology, 864). 3rd edition. USA, New York: Humana Press; 2012, pp. 27-41. [DOI:10.1007/978-1-61779-624-1_2] [PMID]
21. Ebrahimibarough R, Hashemi SJ, Daei R, Khodavisi S, Ardi P, Parsay S. Comparison of the effect of watery and alcoholic Celery ( Apium graveolens) extraction on the growth of Aspergillus flavus, Trichophyton rubrum, and Candida albicans: In vitro. J Dev Biol. 2021;12(1):1-12.
22. Washington C, Winner JR, Stephen DA, William MJ, Elmer WK, Gary WP. Koneman's color atlas and textbook of diagnostic microbiology. 6th edition. Philadelphia: Lippincott Williams & Wilkins; 2006.
23. Rafat Z, Hashemi SJ, Ashrafi K, Nikokar I, Jafari A, Foroushani AR, et al. Epidemiology, laboratory diagnosis, and clinical aspects of fungal pulmonary infections in 384 patients hospitalized in pulmonary units in Guilan province, Iran. Iran J Microbiol. 2020;12(4):353-63. [DOI:10.18502/ijm.v12i4.3940] [PMID] []
24. Clinical and Laboratory Standards Institute. CLSI supplement M100: Performance standards for antimicrobial susceptibility testing. 28th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
25. Clinical and Laboratory Standards Institute. CLSI supplement M60: Performance standards for antifungal susceptibility testing of yeasts. 1st ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
26. Daniel WW. Biostatistics: A foundation for analysis in the health sciences. New York: Wiley; 1987.
27. Dib K, Cherrah Y, Rida S, Filali-Maltouf A, Ennibi O. In vitro antibacterial activity of Myrtus communis L. and Marrubium vulgare L. Leaves against Aggregatibacter actinomycetemcomitans and Eikenella corrodens. Evid Based Complement Altern Med. 2021;2021(1). [DOI:10.1155/2021/8351332] [PMID] []
28. Lapornik B, Prošek M, Wondra AG. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng. 2005;71(2):214-22. [DOI:10.1016/j.jfoodeng.2004.10.036]
29. Nayf EM, Salman HA. Antibacterial activity of aquatic extract of Myrtus communis leaves against periodontitis isolated bacteria. In: IOP conference series: Earth and environmental science (Vol. 880, No. 1, p. 012047). IOP Publishing; 2021. [DOI:10.1088/1755-1315/880/1/012047]
30. Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur Food Res Technol. 2008;226(1):583-90. [DOI:10.1007/s00217-007-0592-1]
31. Amensour M, Bouhdid S, Fernández-López J, Idaomar M, Senhaji NS, Abrini J. Antibacterial activity of extracts of Myrtus communis against food-borne pathogenic and spoilage bacteria. Int J Food Prop. 2010;13(6):1215-24. [DOI:10.1080/10942910903013399]
32. Cannas S, Molicotti P, Ruggeri M, Cubeddu M, Sanguinetti M, Marongiu B, et al. Antimycotic activity of Myrtus communis L. towards Candida spp. from clinical isolates. J Infect Dev Ctries. 2013;7(3):295-8. [DOI:10.3855/jidc.2799] [PMID]
33. Mert T, Fafal T, Kivcak B, Ozturk HT. Antimicrobial and cytotoxic activities of Myrtus communis L. J Fac Pharm Ankara. 2008;37(3):191-9. [DOI:10.1501/Eczfak_0000000501]
34. Raoof M, Khaleghi M, Siasar N, Mohannadalizadeh S, Haghani J, Amanpour S. Antimicrobial activity of methanolic extracts of Myrtus communis L. and Eucalyptus galbie and their combination with calcium hydroxide powder against Enterococcus faecalis. J Dent. 2019;20(3):195-202.
35. Yoshimura M, Amakura Y, Tokuhara M, Yoshida T. Polyphenolic compounds isolated from the leaves of Myrtus communis. J Nat Med. 2008;62(3):366-8. [DOI:10.1007/s11418-008-0251-2] [PMID]
36. Díaz-de-Cerio E, Arráez-Román D, Segura-Carretero A, Ferranti P, Nicoletti R, Perrotta GM, et al. Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Anal Bioanal Chem. 2018;410(1):3547-57 [DOI:10.1007/s00216-018-0914-0] [PMID]
37. Slezák M, Hrivnák R, Machava J. Environmental controls of plant species richness and species composition in black alder floodplain forests of central Slovakia. Tuexenia. 2017;37(1):79-94.
38. Larsen T, Fiehn NE. Resistance of Streptococcus sanguis biofilms to
39. antimicrobial agents. APMIS. 1996;104(1-6):280-4. [DOI:10.1111/j.1699-0463.1996.tb00718.x] [PMID]
40. Shankar SR, Rangarajan R, Sarada D, Kumar CS. Evaluation of antibacterial activity and phytochemical screening of Wrightia Tinctoria L. Pharmacogn J. 2010;2(14):19-22. [DOI:10.1016/S0975-3575(10)80066-5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.