Volume 10, Issue 3 (2024)                   IEM 2024, 10(3): 193-202 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tsele-Tebakang T. Antibacterial Effects of Calendula officinalis Preparations on South African ESKAPE Pathogens. IEM 2024; 10 (3) :193-202
URL: http://iem.modares.ac.ir/article-4-72932-en.html
Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa. , ttsele-tebakang@uj.ac.za
Abstract:   (981 Views)
Background: Medicinal plants possess considerable potential for discovering new phytochemicals that could be considered as a solution to fight against multidrug-resistant pathogens. Calendula officinalis (C. officinalis) is used worldwide due to its antimicrobial properties. This pilot study assessed the antibacterial activity of herbal extract and homeopathic preparation of C. officinalis flowers against South African ESKAPE pathogens.
Materials & Methods: Kirby-Bauer disc diffusion method (with a 6.0 mm disk diameter) was employed to evaluate the antibacterial activity of herbal extract and homeopathic preparation against South African ESKAPE pathogens. Various ethanol concentrations of herbal extract (50, 60, and 90%) and 62% ethanol concentration of homeopathic preparation were tested.
Findings: The inhibitory effect of C. officinalis did not surpass that of antibiotics. However, the ethanol herbal extract of C. officinalis showed some antibacterial activity against ESKAPE pathogens compared to its homeopathic preparation. Moreover, 50% ethanol extract of C. officinalis (20 µL) showed significant antibacterial activity against Staphylococcus species compared to its homeopathic preparation.
Conclusion: The rapid spread of antibiotic resistance necessitates the search for plant-based antibacterials. Due to their wealth in phytochemicals, medicinal plants provide a rich resource for producing novel antibacterial drugs. The current study attempted to demonstrate the inhibitory activities of ethanol herbal extract (HEs) and homeopathic mother tincture (MT) of C. officinalis flowers against ESKAPE pathogens and Escherichia coli species.
Full-Text [PDF 1820 kb]   (446 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2023/12/13 | Accepted: 2024/07/10 | Published: 2024/08/20

References
1. Ak G, Zengin G, Ceylan R, Fawzi Mahomoodally M, Jugreet S, Mollica A, et al. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr J. 2021;36(5):554-63. [DOI:10.1002/ffj.3661]
2. World Health Organisation (WHO). Traditional, complementary, and integrative medicine. Geneva: World Health Organisation; 2020.
3. Givol O, Kornhaber R, Visentin D, Cleary M, Haik J, Harats M. A systematic review of Calendula officinalis extract for wound healing. Wound Repair Regen. 2019;27(5):548-61. [DOI:10.1111/wrr.12737] [PMID]
4. Patil K, Sanjay CJ, DoggALLI N, Devi KR, Harshitha N. A review of Calendula officinalis: Magic in science. J Clin Diagn Res. 2022;16(2):ZE23-7. [DOI:10.7860/JCDR/2022/52195.16024]
5. Abdelwahab SI, Taha MM, Taha SM, Alsayegh AA. Fifty-year of global research in Calendula officinalis L. (1971− 2021): A bibliometric study. Clin Complement Med Pharmacol. 2022;2(4):100059. [DOI:10.1016/j.ccmp.2022.100059]
6. Balciunaitiene A, Puzeryte V, Radenkovs V, Krasnova I, Memvanga PB, Viskelis P, et al. Sustainable-green synthesis of silver nanoparticles using aqueous Hyssopus officinalis and Calendula officinalis extracts and their antioxidant and antibacterial activities. Molecules. 2022;27(22):7700. [DOI:10.3390/molecules27227700] [PMID] []
7. Al-Snafi AE. Medicinal plants with antimicrobial activities (part 2): Plant based review. Sch Acad J Pharm. 2016;5(6):208-39. https://doi.org/10.21276/sajp.2016.5.6.1 [DOI:10.21276/sajp.2016.5.6.2]
8. Kebede T, Gadisa E, Tufa A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS One. 2021;16(3):e0249253. [DOI:10.1371/journal.pone.0249253] [PMID] []
9. Kozlowska J, Pauter K, Skopinska-Wisniewska J, Sionkowska A. Design and characterization of porous collagen/gelatin/hydroxyethyl cellulose matrices containing microspheres based on κ-carrageenan. In: Silva L, editor. Materials design and applications II. Springer, Cham; 2019, p. 151-157. [DOI:10.1007/978-3-030-02257-0_12]
10. Rodino S, Butu M. Herbal extracts: New trends in functional and medicinal beverages. In: Grumezescu AM, Maria A, editors. Functional and Medicinal beverages. Academic Press; 2019, p.73-108. [DOI:10.1016/B978-0-12-816397-9.00003-0]
11. Kumar VN. Lesser-known mother tincture in homeopathy. Int Sci Res J. 2019;5(6):1-3.
12. Malik M, Hussain S, Malik JA, Adil A, Nazir S, Gondal MU. Quality assessment of frequently available mother tinctures in the market by employing standard values. Afr J Pharm Pharmacol. 2021;15(4):61-70. [DOI:10.5897/AJPP2021.5229]
13. Jadimurthy R, Mayegowda SB, Nayak SC, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol Rep. 2022;34:e00728. [DOI:10.1016/j.btre.2022.e00728] [PMID] []
14. Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PloS One. 2017;12(12):e0189621. [DOI:10.1371/journal.pone.0189621] [PMID] []
15. World Health Organisation (WHO). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: World Health Organisation; 2017.
16. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 2019;10:539. [DOI:10.3389/fmicb.2019.00539] [PMID] []
17. Bonten M, Johnson JR, van den Biggelaar AH, Georgalis L, Geurtsen J, de Palacios PI, et al. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin Infect Dis. 2021;72(7):1211-9. [DOI:10.1093/cid/ciaa210] [PMID]
18. Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, et al. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol. 2022;13:1029098. [DOI:10.3389/fmicb.2022.1029098] [PMID] []
19. Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, et al. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon. 2021;7(2):e06310. [DOI:10.1016/j.heliyon.2021.e06310] [PMID] []
20. Navidinia M, Goudarzi M, Rameshe SM, Farajollahi Z, Asl PE, Mounesi MR. Molecular characterization of resistance genes in MDR-ESKAPE pathogens. J Pure Appl Microbiol. 2017;11(2):779-92. [DOI:10.22207/JPAM.11.2.17]
21. De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin microbiol Rev. 2020;33(3):10-128. [DOI:10.1128/CMR.00181-19] [PMID] []
22. British Pharmacopoeia Commission. British Pharmacopoeia. Stationery Office Publishers; 2017.
23. Benyunes S. German Homoeopathic Pharmacopeia. MedPharm Scientific publishers; 2005.
24. Clinical and Laboratory Standards Institute (CLSI). M100: Performance standards for antimicrobial disk susceptibility testing. 33rd ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2023.
25. Shahen MZ, Mahmud S, Rony MH, Sohana SN, Imran MA, Al Maruf MA, et al. Effect of antibiotic susceptibility and inhibitory activity for the control of growth and survival of microorganisms of extracts of Calendula officinalis. Eur J Med Health Sci. 2019;1(1):1-9. [DOI:10.34104/ejmhs.01959063]
26. Jodh R, Tawar M, Behere S, Randhave N, Jirapure P, Ingle S. A review on Calendula officinalis. Res J Pharmacogn Phytochem. 2023;15(1):5-10. [DOI:10.52711/0975-4385.2023.00002]
27. Abate G, Zhang L, Pucci M, Morbini G, Mac Sweeney E, Maccarinelli G, et al. Phytochemical analysis and anti-inflammatory activity of different ethanolic phyto-extracts of Artemisia annua L. Biomolecules. 2021;11(7):975. [DOI:10.3390/biom11070975] [PMID] []
28. Karnwal A. In vitro antibacterial activity of Hibiscus rosa sinensis, Chrysanthemum indicum, and Calendula officinalis flower extracts against Gram negative and Gram-positive food poisoning bacteria. Adv Trad Med. 2022;22(3):607-19. [DOI:10.1007/s13596-021-00562-x]
29. Nouri L, Nafchi AM, Karim AA. Phytochemical, antioxidant, antibacterial, and α-amylase inhibitory properties of different extracts from betel leaves. Ind Crops Prod. 2021;62:47-52. [DOI:10.1016/j.indcrop.2014.08.015]
30. Jyotisree G, Sruthi R, Biju CR, Menon AS. Calendula officinalis and Echinacae purpurae as antimicrobial agent. J Appl Pharm Res. 2020;8(2):08-12.
31. Rehman T, Saeed A. Evaluation of antibacterial and antioxidant potential of some homoeopathic mother tinctures. Indian J Res Homoeopathy. 2019;13(2):100-6. [DOI:10.4103/ijrh.ijrh_44_17]
32. Shaffique S, Anwer H, Asif HM, Akram M, Rehman A, Ahmed S, et al. In vitro evaluation of the antioxidant activity of homeopathic mother tincture and total phenolic content. RADS J Pharm Pharm Sci. 2020;8(1):26-30. [DOI:10.37962/jpps.v8i1.268]
33. Kubiak DW, Gilmore ET, Buckley MW, Lynch R, Marty FM, Koo S. Adjunctive management of central line-associated bloodstream infections with 70% ethanol-lock therapy. J Antimicrob Chemother. 2014;69(6):1665-8. [DOI:10.1093/jac/dku017] [PMID] []
34. Worley MV, Dollard EW, Aragon L, Henderson K, Abbo LM, Byers P. Role of ethanol locks in reducing bloodstream infections in adults on parenteral nutrition. Infect Control Hosp Epidemiol. 2017;38(9):1133-5. [DOI:10.1017/ice.2017.154] [PMID]
35. Tighe SL. Clinical application of prophylactic ethanol lock therapy in pediatric patients with intestinal failure. Gastroenterol Nurs. 2016;39(5):376-84. [DOI:10.1097/SGA.0000000000000180] [PMID]
36. Benthall G, Touzel RE, Hind CK, Titball RW, Sutton JM, Thomas RJ, et al. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella. Int J Antimicrob Agents. 2015;46(5):538-45. [DOI:10.1016/j.ijantimicag.2015.07.014] [PMID]
37. Subramani R, Narayanasamy M, Feussner KD. Plant-derived antimicrobials to fight against multidrug-resistant human pathogens. 3 Biotech. 2017;7:1-15. [DOI:10.1007/s13205-017-0848-9] [PMID] []
38. Haaber J, Penadés JR, Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 2017;25(11):893-905. [DOI:10.1016/j.tim.2017.05.011] [PMID]
39. Rossi CC, Pereira MF, Giambiagi-deMarval M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol. 2020;43(1):e20190065. [DOI:10.1590/1678-4685-gmb-2019-0065] [PMID] []
40. Sahingil D. GC/MS-olfactometric characterization of the volatile compounds, determination of antimicrobial and antioxidant activity of essential oil from flowers of Calendula (Calendula officinalis L.). J Essent Oil Bear Plants. 2019;22(6):1571-80. [DOI:10.1080/0972060X.2019.1703829]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.