Volume 9, Issue 2 (2023)                   IEM 2023, 9(2): 107-116 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bagheri S, firoozeh F, sasani E, Shahbazi T, moniri R. Quinolone-Resistant Isolates of Acinetobacter baumannii in a Teaching Hospital in Iran. IEM 2023; 9 (2) :107-116
URL: http://iem.modares.ac.ir/article-4-67216-en.html
1- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
2- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
3- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
4- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
5- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran , moniri@kaums.ac.ir
Abstract:   (343 Views)
Aims: Acinetobacter baumannii could develop resistance through different mechanisms, leading to the emergence of strains resistant to all commercially accessible antibiotics. This research aimed to evaluate the antimicrobial resistance pattern and the prevalence of genes encoding quinolone resistance in quinolone-resistant isolates.
Methods: In this study, 114 A. baumannii strains were isolated from patients admitted to a teaching hospital in Kashan, during 2013-2014. Antimicrobial susceptibility testing was performed using the Kirby-Bauer disk-diffusion breakpoint assay. Polymerase chain reaction (PCR) was employed to identify quinolone resistance encoding genes (gyrA and parC).
Findings: All A. baumannii strains showed resistance to piperacillin, ceftriaxone, ceftazidime, and cefotaxime, and all of them were susceptible to colistin and polymyxin B. In addition, 100% of A. baumannii strains were MDR (Multi-drug resistance), and 68.4% (78 isolates) of them were XDR (Extensively-drug resistant), while none of them were PDR (Pan-drug resistant). All A. baumannii strains isolated in this study were positive for the presence of parC and gyrA genes.
Conclusion: MDR A. baumannii strains were highly prevalent among hospitalized patients in this study. Based on these comes about, novel prevention and treatment procedures against A. baumannii infections are justified. Moreover, these information may help in reexamining treatment rules and territorial arrangements in care units to moderate the rise of antimicrobial resistance.
 
Full-Text [PDF 806 kb]   (132 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2023/02/1 | Accepted: 2023/08/7 | Published: 2023/08/19

References
1. 1. Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents. 2013;41(1):11-9. [DOI:10.1016/j.ijantimicag.2012.09.008] [PMID]
2. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(10):3471-84. [DOI:10.1128/AAC.01464-06] [PMID] []
3. Vila J, Martí S, Sanchez-Céspedes J. Porins, efflux pumps, and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2007;59(6):1210-5. [DOI:10.1093/jac/dkl509] [PMID]
4. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001;45(12):3375-80. [DOI:10.1128/AAC.45.12.3375-3380.2001] [PMID] []
5. Taha MS, Shoeib SM, Abdelwahab MA. Mutations in gyrA and parC genes in fluoroquinolone-resistant Acinetobacter baumannii that causes hospital acquired infection. Microbes and Infectious Diseases. 2023;4(2):590-600. [DOI:10.21608/mid.2023.183097.1435]
6. Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: Need for international harmonization in terminology. Clin Infect Dis. 2008;46(7):1121-2. [DOI:10.1086/528867] [PMID]
7. Hamouda A, Amyes SG. Novel gyrA and parC point mutations in two strains of Acinetobacter baumannii resistant to ciprofloxacin. J Antimicrob Chemother. 2004;54(3):695-6. [DOI:10.1093/jac/dkh368] [PMID]
8. Vila J, Ruiz J, Goni P, Marcos A, Jimenez de Anta T. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 1995;39(5):1201-3. [DOI:10.1128/AAC.39.5.1201] [PMID] []
9. Deguchi T, Yasuda M, Nakano M, Ozeki S, Kanematsu E, Nishino Y, et al. Detection of mutations in the gyrA and parC genes in quinolone-resistant clinical isolates of Enterobacter cloacae. J Antimicrob Chemother. 1997;40(4):543-9. [DOI:10.1093/jac/40.4.543] [PMID]
10. Acar J, O'Brien T, Goldstein F, Jones R. The epidemiology of bacterial resistance to quinolones. Drugs. 1993;45(3):24-8. [DOI:10.2165/00003495-199300453-00006] [PMID]
11. Feizabadi M, Fathollahzadeh B, Taherikalani M, Rasoolinejad M, Sadeghifard N, Aligholi M, et al. Antimicrobial susceptibility patterns and distribution of blaOXA genes among Acinetobacter spp. isolated from patients at Tehran hospitals. Jpn J Infect Dis. 2008;61(4):274-8. [DOI:10.7883/yoken.JJID.2008.274] [PMID]
12. Moniri R, Farahani RK, Shajari G, Shirazi MN, Ghasemi A. Molecular epidemiology of aminoglycosides resistance in Acinetobacter spp. with emergence of multidrug-resistant strains. Iran J Public Health. 2010;39(2):63-8.
13. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.
14. Nowroozi J, Sepahi AA, Kamarposhti LT, Razavipour R, Mazhar F. Evaluation of ciprofloxacin (gyrA and parC genes) and tetracycline (tetB gene) resistance in nosocomial Acinetobacter baumannii infections. Jundishapur J Microbiol . 2014;7(2):e8976. [DOI:10.5812/jjm.8976] [PMID] []
15. Tan Y, Su J, Fu M, Zhang H, Zeng H. Recent advances in phage-based therapeutics for multi-drug resistant Acinetobacter baumannii. Bioengineering. 2023;10(1):35. [DOI:10.3390/bioengineering10010035] [PMID] []
16. Rezaei M, Moniri R, Mousavi S. Molecular analysis and susceptibility pattern of meticillin-resistant Staphylococcus aureus strains in emergency department patients and related risk factors in Iran. J Hosp Infect. 2015;89(3):186-91. [DOI:10.1016/j.jhin.2014.11.023] [PMID]
17. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021;10(3):373. [DOI:10.3390/pathogens10030373] [PMID] []
18. Higgins P, Fluit A, Milatovic D, Verhoef J, Schmitz FJ. Mutations in GyrA, ParC, MexR, and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2003;21(5):409-13. [DOI:10.1016/S0924-8579(03)00009-8] [PMID]
19. Manchanda V, Sanchaita S, Singh NP. Multidrug resistant acinetobacter. J Glob Infect Dis. 2010;2(3):291-304. [DOI:10.4103/0974-777X.68538] [PMID] []
20. Salehi B, Goudarzi H, Nikmanesh B, Houri H, Alavi-Moghaddam M, Ghalavand Z. Emergence and characterization of nosocomial multidrug-resistant and extensively drug-resistant Acinetobacter baumannii isolates in Tehran, Iran. Journal of infection and chemotherapy. 2018 Jul 1;24(7):515-23. [DOI:10.1016/j.jiac.2018.02.009] [PMID]
21. Dizbay MU, Altuncekic A, Sezer BE, Ozdemir K, Arman D. Colistin and tigecycline susceptibility among multidrug-resistant Acinetobacter baumannii isolated from ventilator-associated pneumonia. Int J Antimicrob Agents. 2008;32(1):29-32. [DOI:10.1016/j.ijantimicag.2008.02.016] [PMID]
22. Mirzaei B, Bazgir ZN, Goli HR, Iranpour F, Mohammadi F, Babaei R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from northeast of Iran. BMC Res Notes. 2020;13:1-6. [DOI:10.1186/s13104-020-05224-w] [PMID] []
23. Yadav SK, Bhujel R, Hamal P, Mishra SK, Sharma S, Sherchand JB. Burden of multidrug-resistant Acinetobacter baumannii infection in hospitalized patients in a tertiary care hospital of Nepal. Infect Drug Resist. 2020;3:725-32. [DOI:10.2147/IDR.S239514] [PMID] []
24. Chiu CH, Lee HY, Tseng LY, Chen CL, Chia JH, Su LH, et al. Mechanisms of resistance to ciprofloxacin, ampicillin/sulbactam, and imipenem in Acinetobacter baumannii clinical isolates in Taiwan. Int J Antimicrob Agents. 2010;35(4):382-6. [DOI:10.1016/j.ijantimicag.2009.12.009] [PMID]
25. Ardebili A, Lari AR, Beheshti M, Lari ER. Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. Iran J Basic Med Sci. 2015;18(6):623-6.
26. Hooper DC. Bacterial topoisomerases, anti-topoisomerases, and anti-topoisomerase resistance. Clin Infect Dis. 1998;27(Suppl 1):S54-63. [DOI:10.1086/514923] [PMID]
27. Deguchi T, Yasuda M, Nakano M, Ozeki S, Ezaki T, Saito I, et al. Quinolone-resistant Neisseria gonorrhoeae: Correlation of alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles. Antimicrob Agents Chemother. 1996;40(4):1020-3. [DOI:10.1128/AAC.40.4.1020] [PMID] []
28. Li XZ, Livermore DM, Nikaido H. Role of efflux pump (s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother. 1994;38(8):1732-41. [DOI:10.1128/AAC.38.8.1732] [PMID] []
29. Sato K, Nakae T. Outer membrane permeability of Acinetobacter calcoaceticus and its implication in antibiotic resistance. J Antimicrob Chemother. 1991;28(1):35-45. [DOI:10.1093/jac/28.1.35] [PMID]
30. Vila J, Ruiz J, Goñi P, Jimenez de Anta T. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother. 1997;39(6):757-62. [DOI:10.1093/jac/39.6.757] [PMID]
31. Tantawy EA, El-Sayed HM, Matar HM, Azhary BA. Multi- and extensive-drug resistant Acinetobacter baumannii in ICUs: Risk factors, antimicrobial resistance profiles, and co-harboring of gyrA and parC mutations. Egypt J Med Microbiol. 2020;29(4):109-16. [DOI:10.51429/EJMM29414]
32. Nouri R, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol. 2016;47(4):925-30. [DOI:10.1016/j.bjm.2016.07.016] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.