Volume 9, Issue 2 (2023)                   IEM 2023, 9(2): 117-125 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri R, Alipour M, Khajir Engasi A, Amiri A R, Mofarrah R. Monitoring and Investigation of Resistance Genes gyrA, parC, blaZ, ermA, ermB, and ermC in Staphylococcus saprophyticus Isolated from Urinary Tract Infections in Mazandaran Province, Iran. IEM 2023; 9 (2) :117-125
URL: http://iem.modares.ac.ir/article-4-67634-en.html
1- Department of cell and molecular Biology, Babol Branch Islamic Azad University, Babol, Iran
2- Department of cell and molecular Biology, Babol Branch Islamic Azad University, Babol, Iran , m.alipour@baboliau.ac.ir
3- Department of cell and molecular Biology, Qaemshahr Branch Islamic Azad University, Qaemshahr, Iran
4- Department of Dermatology, Faculty of Medicine, Sari Branch. Islamic Azad University, Sari,Iran
Abstract:   (317 Views)
Aims: Bacterial urinary tract infections are observed in all age groups due to the development of antibiotic-resistant species. This study aimed to investigate resistance genes gyrase subunit A (gyrA), topoisomerase IV (parC) subunit gene, beta lactamase (blaZ), erythromycin ribosome methylase (ermC), ermB, and ermA in Staphylococcus saporophyticus isolated from patients with urinary tract infections (UTIs) in Mazandaran Province, Iran.
Materials & Methods: In this cross-sectional descriptive study, 3280 clinical samples were collected from patients with UTIs in Mazandaran Province from April to December 2022. Isolates were identified by biochemical tests. Microbial sensitivity tests were performed by disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Polymerase chain reaction (PCR) was used to check the presence of resistance genes.
Findings: Out of a total of 3280 clinical samples collected, 2088 samples were detected by biochemical tests at the genus level. Escherichia coli (55.22%) and staphylococci (21.59%) were the most frequent bacterial isolates. S. saprophyticus was identified in 52 (2.49%) samples. The frequency of gyrA and parC genes in S. saprophyticus isolates was 23 and 1.92%, respectively. The blaZ gene was observed in none of the samples. The prevalence of ermA, ermB, and ermC genes was 21, 1.92, and 26%, respectively.
 The antibiogram test showed that the highest frequency of resistance to erythromycin, azithromycin, and clarithromycin was 70, 36, and 20%, respectively.
Conclusion: According to the present study findings, rapid detection of these strains in hospitals leads to more effective control of the spread of these strains.
 
Full-Text [PDF 660 kb]   (141 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2023/02/21 | Accepted: 2023/07/30 | Published: 2023/08/19

References
1. 1. Shenagari M, Bakhtiari M, Mojtahedi A, Roushan ZA. High frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichia coli isolates from the north of Iran. Iranian Journal of Basic Medical Sciences. 2018;21(12):1226.
2. Mirzaii M, Jamshidi S, Zamanzadeh M, Marashifard M, Hosseini SAAM, Haeili M, et al. Determination of gyrA and parC mutations and prevalence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infection in Iran. Journal of Global Antimicrobial Resistance. 2018;13:197-200. [DOI:10.1016/j.jgar.2018.04.017] [PMID]
3. Nehra V, Saharan BS, Choudhary M. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus. 2016;5(1):1-10. [DOI:10.1186/s40064-016-2584-8] [PMID] []
4. TAHMASEBI H, BOKAEIAN M, ADABI J. PHENOTYPIC AND MOLECULAR STUDY OF BETA-LACTAM RESISTANCE IN COAGULASENEGATIVE STAPHYLOCOCCI SAMPLES. 2016. [DOI:10.29252/jmj.14.1.55]
5. Kang JY, Lee W, Noh GM, Jeong BH, Park I, Lee SJ. Fluoroquinolone resistance of Staphylococcus epidermidis isolated from healthy conjunctiva and analysis of their mutations in quinolone-resistance determining region. Antimicrobial Resistance & Infection Control. 2020;9(1):1-8. [DOI:10.1186/s13756-020-00841-3] [PMID] []
6. Nasaj M, Saeidi Z, Tahmasebi H, Dehbashi S, Arabestani MR. Prevalence and distribution of resistance and enterotoxins/enterotoxin-like genes in different clinical isolates of coagulase-negative Staphylococcus. European Journal of Medical Research. 2020;25(1):1-11. [DOI:10.1186/s40001-020-00447-w] [PMID] []
7. Osman K, Alvarez-Ordóñez A, Ruiz L, Badr J, ElHofy F, Al-Maary KS, et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Annals of clinical microbiology and antimicrobials. 2017;16(1):1-10. [DOI:10.1186/s12941-017-0210-4] [PMID] []
8. Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. Journal of Antimicrobial Chemotherapy. 2006;57(3):450-60. [DOI:10.1093/jac/dki492] [PMID]
9. Bokaeian M, Tahmasebi H, Adabi J, Mohammad Zadeh A, Mardaneh J. Molecular study of the blaZ Staphylococcus aureus gene isolated from clinical samples. Journal of Sabzevar University of Medical Sciences. 2018;25(1):31-7.
10. Hisatsune J, Hirakawa H, Yamaguchi T, Fudaba Y, Oshima K, Hattori M, et al. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B. Antimicrobial agents and chemotherapy. 2013;57(12):6131-40. [DOI:10.1128/AAC.01062-13] [PMID] []
11. Rosato AE, Kreiswirth BN, Craig WA, Eisner W, Climo MW, Archer GL. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrobial agents and chemotherapy. 2003;47(4):1460-3. [DOI:10.1128/AAC.47.4.1460-1463.2003] [PMID] []
12. Gupta K, Hooton TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Annals of internal medicine. 2001;135(1):41-50. [DOI:10.7326/0003-4819-135-1-200107030-00012] [PMID]
13. Biadglegne F, Abera B. Antimicrobial resistance of bacterial isolates from urinary tract infections at Felge Hiwot Referral Hospital, Ethiopia. The Ethiopian Journal of Health Development. 2009;23(3). [DOI:10.4314/ejhd.v23i3.53248]
14. Stamm WE, Norrby SR. Urinary tract infections: disease panorama and challenges. The Journal of infectious diseases. 2001;183(Supplement_1):S1-S4. [DOI:10.1086/318850] [PMID]
15. Moges A, Genetu A, Mengistu G. Antibiotic sensitivities of common bacterial pathogens in urinary tract infections at Gondar Hospital, Ethiopia. East African Medical Journal. 2002;79(3):140-2. [DOI:10.4314/eamj.v79i3.8893] [PMID]
16. Khan AU, Zaman MS. Multiple drug resistance pattern in urinary tract infection patients in Aligarh. Biomed Res. 2006;17(3):179-81.
17. Tayebi Z, Seyedjavadi SS, Goudarzi M, Rahimi MK, Boromandi S, Bostanabad SZ, et al. Frequency and antibiotic resistance pattern in gram positive uropathogenes isolated from hospitalized patients with urinary tract infection in Tehran. J Genes Microb Immun. 2014;2014:1-9. [DOI:10.5899/2014/jgmi-00013]
18. Mokhtarian D H, Ghahramani M, Nourzad H. A study of antibiotic resistance of Escherichia coli isolated from urinary tract infection. The Horizon of Medical Sciences. 2006;12(3):5-10.
19. Mansour A, MAHDINEZHAD M, Pourdangchi Z. Study of bacteria isolated from urinary tract infections and determination of their susceptibility to antibiotics. 2009.
20. Sibi G, Devi AP, Fouzia K, Patil BR. Prevalence, microbiologic profile of urinary tract infection and its treatment with trimethoprim in diabetic patients. Research journal of microbiology. 2011;6(6):543. [DOI:10.3923/jm.2011.543.551]
21. Akinkunmi E, Lamikanra A. Species distribution and antibiotic resistance in coagulase-negative staphylococci colonizing the gastrointestinal tract of children in Ile-Ife, Nigeria. Tropical Journal of Pharmaceutical Research. 2010;9(1). [DOI:10.4314/tjpr.v9i1.52033]
22. Subramanian M, Ganesapandian S, Singh M, Kumaraguru A. Antimicrobial susceptibility pattern of urinary tract infection causing human pathogenic bacteria. Asian J Med Sci. 2011;3(2):56-60.
23. Eryılmaz M, Bozkurt ME, Yildiz MM, Akin A. Antimicrobial resistance of urinary Escherichia coli isolates. Tropical Journal of Pharmaceutical Research. 2010;9(2). [DOI:10.4314/tjpr.v9i2.53712]
24. Omololu-Aso J, Kolawole D, Omololu-Aso O, Ajisebutu S. Antibiotics sensitivity pattern of staphylococcus aureus from fomites in the Obafemi Awolowo University Teaching Hospital Complex (OAUTHC) Nigeria. Int J Med Med Sci. 2011;3:32-6.
25. Matynia B, Młodzinska E, Hryniewicz W. Antimicrobial susceptibility patterns of Staphylococcus aureus in Poland obtained by the National Quality Assurance Programme. Clinical microbiology and infection. 2005;11(5):379-85. [DOI:10.1111/j.1469-0691.2005.01105.x] [PMID]
26. de Paiva-Santos W, Barros EM, de Sousa VS, Laport MS, Giambiagi-deMarval M. Identification of coagulase-negative Staphylococcus saprophyticus by polymerase chain reaction based on the heat-shock repressor encoding hrcA gene. Diagnostic Microbiology and Infectious Disease. 2016;86(3):253-6. [DOI:10.1016/j.diagmicrobio.2016.08.006] [PMID]
27. Bokaeian M, Adabi J, Zeyni B, Tahmasebi H. The presence of aac (6') Ie/aph (2"), aph (3')-IIIa1, ant (4')-Ia1 genes and determining methicillin resistance in Staphylococcus Epidermidis and Staphylococcus Saprophyticus strains isolated from clinical specimens. Arak Univ Med Sci. 2017;19:11-25.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.