Volume 4, Issue 4 (2018)                   IEM 2018, 4(4): 123-130 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abednezhad A, Nasirmoghadas P, Asghari Moghaddam N. Investigation of Antimicrobial Resistant Patterns and Prevalence of Carbapenamase Genes (imp-1, vim-2, and kpc) in MDR Pseudomonas aeruginosa Strains Isolated from Patients in Mottahari Hospital in Tehran, Iran. IEM 2018; 4 (4) :123-130
URL: http://iem.modares.ac.ir/article-4-28547-en.html
1- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran , nas.asgharimoghaddam@iauctb.ac.ir
Abstract:   (5158 Views)
Aims: The aim of this study was to identify antibiotic resistant patterns and the prevalence rate of carbapenem resistant genes (imp-1, vim-2, kpc) in P. aeruginosa strains isolated from burn patients in Shahid Motahari Hospital of Tehran.
Materials & Methods: In this study, 63 P. aeruginosa strains were collected from infected patients.  Isolates were identified by biochemical tests and specific 16SrDNA PCR. Antibiotic susceptibility test was performed by standard Kirby-Bauer method according to the CLSI guidelines. The prevalence of imp-1, vim-2, and kpc genes were assessed by PCR.
Findings: All of the isolates were confirmed as P. aeruginosa by phenotypic tests and specific 16SrDNA PCR. Totally, 14 antibiotypes were identified. The highest resistance was observed against to tobramycin, gentamicin, amoxi-clavulanic acid, and cefoxitin (100%) and the most sensitivity was shown against colistin (100%). All of the isolates were multidrug resistant (MDR), 100 and 46% were positive for Extended Spectrum β-Lactamases (ESBL) and Metallo- β-Lactamases (MBLs) respectively. The imp-1 and kpc genes were not detected (0%), while vim-2 gene was present in all of the isolates.
Conclusion: In the current study, the high resistance rate to antibiotics might be due to their overuse for burn patients as a prophylactic or therapeutic agents. Colistin is considered a drug of choice for the treatment of wounds infected by P. aeruginosa in burn patients. In this study, the majority of P. aeruginosa isolates belonged to Antibiotype 1 and possess carbapenemase vim-2. Therefore, to stop this resistance transmission, the prevention and control are apparently essential.
Keywords: P. aeruginosa, Burns, KPC, VIM, IMP
Full-Text [PDF 1001 kb]   (1583 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2018/06/24 | Accepted: 2018/10/5 | Published: 2018/12/20

References
1. Lee JY, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis. 2014;78(3):271-6. [Link] [DOI:10.1016/j.diagmicrobio.2013.11.027]
2. Biswal I, Arora BS, Kasana D, Neetushree. Incidence of multidrug resistant pseudomonas aeruginosa isolated from burn patients and environment of teaching institution. J Clin Diagn Res. 2014;8(5):DC26-9. [Link]
3. Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi Jafari N, Izadi M, et al. Characterization of Pseudomonas aeruginosa strains isolated from burned patients hospitalized in a major burn center in Tehran, Iran. Acta Medica Iranica. 2011;49(10):675-9. [Link]
4. Ghanbarzadeh Corehtash Z, Khorshidi A, Firoozeh F, Akbari H, Mahmoudi Aznaveh A. Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microbiol. 2015;8(10):e22345. [Link] [DOI:10.5812/jjm.22345]
5. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis. 2002;34(5):634-40. [Link] [DOI:10.1086/338782]
6. Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia. 2012;16(4):303-7. [Link]
7. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009;58(Pt 9):1133-48. [Link] [DOI:10.1099/jmm.0.009142-0]
8. Fazeli H, Sadighian H, Esfahani BN, Pourmand MR. Genetic characterization of Pseudomonas aeruginosa-resistant isolates at the university teaching hospital in Iran. Adv Biomed Res. 2015;4:156. [Link] [DOI:10.4103/2277-9175.161583]
9. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: The quiet before the storm?. Clin Microbiol Rev. 2005;18(2):306-25. [Link] [DOI:10.1128/CMR.18.2.306-325.2005]
10. Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP, et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob Agents Chemother. 2007;51(4):1553-5. [Link] [DOI:10.1128/AAC.01405-06]
11. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633-41. [Link] [DOI:10.1128/AAC.50.5.1633-1641.2006]
12. Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: The story so far. J Antimicrob Chemother. 2006;57(1):1-3. [Link] [DOI:10.1093/jac/dki425]
13. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9. [Link] [DOI:10.1016/j.jpha.2015.11.005]
14. Patzer JA, Dzierzanowska D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993-2002). Int J Antimicrob Agents. 2007;29(2):153-8. [Link] [DOI:10.1016/j.ijantimicag.2006.08.044]
15. Pitout JD, Gregson DB, Poirel L, Mc Clure JA, Le P, Church DL. Detection of Pseudomonas aeruginosa producing metallo-beta-lactamases in a large centralized laboratory. J Clin Microbiol. 2005;43(7):3129-35. [Link] [DOI:10.1128/JCM.43.7.3129-3135.2005]
16. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40(10):3798-801. [Link] [DOI:10.1128/JCM.40.10.3798-3801.2002]
17. Rafiee R, Eftekhar F, Tabatabaei SA, Minaee Tehrani D. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol. 2014;7(9):e16436. [Link] [DOI:10.5812/jjm.16436]
18. Gombac F, Riccio ML, Rossolini GM, Lagatolla C, Tonin E, Monti-Bragadin C, et al. Molecular characterization of integrons in epidemiologically unrelated clinical isolates of Acinetobacter baumannii from Italian hospitals reveals a limited diversity of gene cassette arrays. Antimicrob Agents Chemother. 2002;46(11):3665-8. [Link] [DOI:10.1128/AAC.46.11.3665-3668.2002]
19. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002;8(6):321-31. [Link] [DOI:10.1046/j.1469-0691.2002.00401.x]
20. Nobari S, Shahcheraghi F, Rahmati Ghezelgeh F, Valizadeh B. Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran. Microb Drug Resist. 2014;20(4):285-93. [Link] [DOI:10.1089/mdr.2013.0074]
21. National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470-85. [Link] [DOI:10.1016/j.ajic.2004.10.001]
22. Vitkauskienė A, Skrodenienė E, Dambrauskienė A, Macas A, Sakalauskas R. Pseudomonas aeruginosa bacteremia: Resistance to antibiotics, risk factors, and patient mortality. Medicina (Kaunas). 2010;46(7):490-5. [Link] [DOI:10.3390/medicina46070071]
23. Golshani Z, Ahadi AM, Sharifzadeh A. Antimicrobial susceptibility pattern of Pseudomonas aeruginosa isolated from patients referring to hospitals. Arch Hyg Sci. 2012;1(2):48-53. [Link]
24. Akhi MT, Ghotaslou R, Asgharzadeh M, Varshochi M, Pirzadeh T, Memar MY, et al. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg Infect Control. 2015;10:Doc02. [Link]
25. Griswold JA. White blood cell response to burn injury. Semin Nephrol. 1993;13(4):409-15. [Link]
26. Bandekar N, Vinodkumar CS, Basavarajappa KG, Prabhakar PJ, Nagaraj P. Beta lactamases mediated resistance amongst gram negative bacilli in burn infection. Int J Biol Med Res. 2011;2(3):766-70. [Link]
27. Wang XD, Cai JC, Zhou HW, Zhang R, Chen GX. Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated beta-lactamase production and OmpK36 porin deficiency. J Med Microbiol. 2009;58(Pt 9):1196-202. [Link] [DOI:10.1099/jmm.0.008094-0]
28. Falahat S, Shojapour M, Sadeghi A. Detection of KPC carbapenemase in Pseudomonas aeruginosa isolated from clinical samples using modified hodge test and boronic acid phenotypic methods and their comparison with the polymerase chain reaction. Jundishapur J Microbiol. 2016;9(9):e27249. [Link] [DOI:10.5812/jjm.27249]
29. Azimi L, Rastegar Lari A, Talebi M, Ebrahimzadeh Namvar AM, Soleymanzadeh Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in Tehran. J Med Bacteriol. 2013;2(3-4):26-31. [Link]
30. Pakbaten Toupkanlou S, Najar Peerayeh Sh, Pirhajati Mahabadi R. Class A and D extended-spectrum β-lactamases in imipenem resistant Pseudomonas aeruginosa isolated from burn patients in Iran. Jundishapur J Microbiol. 2015;8(8):e18352. [Link] [DOI:10.5812/jjm.18352v2]
31. Yousefi S, Farajnia S, Nahaei MR, Akhi MT, Ghotaslou R, Soroush MH, et al. Detection of metallo-β-lactamase-encoding genes among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Diagn Microbiol Infect Dis. 2010;68(3):322-5. [Link] [DOI:10.1016/j.diagmicrobio.2010.06.018]
32. Poirel L, Menuteau O, Agoli N, Cattoen C, Nordmann P. Outbreak of extended-spectrum beta-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J Clin Microbiol. 2003;41(8):3542-7. [Link] [DOI:10.1128/JCM.41.8.3542-3547.2003]
33. Rastegar Lari A, Bahrami Honar H, Alaghehbandan R. Pseudomonas infections in Tohid Burn Center, Iran. Burns. 1998;24(7):637-41. [Link] [DOI:10.1016/S0305-4179(98)00090-4]
34. De AS, Kumar SH, Baveja SM. Prevalence of metallo-β-lactamase producing Pseudomonas aeruginosa and Acinetobacter species in intensive care areas in a tertiary care hospital. Indian J Crit Care Med. 2010;14(4):217-9. [Link] [DOI:10.4103/0972-5229.76089]
35. Jazani N, Babazadeh H, Sohrabpour M, Zartoshti M, Ghasemi Rad M. The prevalence of extended spectrum beta-lactamases in Acinetobacter baumannii isolates from burn wounds in Iran. Internet J Microbiol. 2010;9(2). [Link]
36. Peymani A, Nahaei MR, Farajnia S, Hasani A, Mirsalehian A, Sohrabi N, et al. High prevalence of metallo-beta-lactamase-producing Acinetobacter baumannii in a teaching hospital in Tabriz, Iran. Jpn J Infect Dis. 2011;64(1):69-71. [Link]
37. Diamante P, Camporese A. Evaluation of Vitek 2 performance for identifying extended spectrum beta-lactamases in Enterobacteriaceae "other than Escherichia coli, Proteus mirabilis and Klebsiella spp". Le Infezioni in Medicina. 2006;14(4):216-26. [Italian] [Link]
38. Hocquet D, Plésiat P, Dehecq B, Mariotte P, Talon D, Bertrand X, et al. Nationwide investigation of extended-spectrum beta-lactamases, metallo-beta-lactamases, and extended-spectrum oxacillinases produced by ceftazidime-resistant Pseudomonas aeruginosa strains in France. Antimicrob Agents Chemother. 2010;54(8):3512-5. [Link] [DOI:10.1128/AAC.01646-09]
39. Ozyurt M, Haznedaroğlu T, Sahiner F, Oncül O, Ceylan S, Ardiç N, et al. Antimicrobial resistance profiles of community-acquired uropathogenic Escherichia coli isolates during 2004-2006 in a training hospital in Istanbul. Mikrobiyoloji Bülteni. 2008;42(2):231-43. [Turkish] [Link]
40. Lee K, Yong D, Yum JH, Lim YS, Bolmström A, Qwärnström A, et al. Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2005;43(2):942-4. [Link] [DOI:10.1128/JCM.43.2.942-944.2005]
41. Abiri R, Mohammadi P, Shavani N, Rezaei M. Detection and genetic characterization of metallo-β-lactamase IMP-1 and VIM-2 in Pseudomonas aeruginosa strains from different hospitals in Kermanshah, Iran. Jundishapur J Microbiol. 2015;8(9):e22582. 45- Fazeli H, Sadighian H, Nasr Esfahani B, Pourmand MR. Identification of class-1 integron and various β-lactamase classes among clinical isolates of Pseudomonas aeruginosa at children's medical center hospital. J Med Bacteriol. 2012;1(3-4):25-36. [Link]
42. Aghamiri S, Amirmozafari N, Fallah Mehrabadi J, Fouladtan B, Samadi Kafil H. Antibiotic resistance pattern and evaluation of metallo-beta lactamase genes including bla- IMP and bla- VIM types in Pseudomonas aeruginosa isolated from patients in Tehran hospitals. ISRN Microbiol. 2014;2014:941507. [Link] [DOI:10.1155/2014/941507]
43. Cai S, Chen Y, Song D, Kong J, Wu Y, Lu H. Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. Exp Ther Med. 2016;12(5):2869-72. [Link] [DOI:10.3892/etm.2016.3690]
44. Tato M, Coque TM, Baquero F, Cantón R. Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54(1):320-7. [Link] [DOI:10.1128/AAC.00783-09]
45. Fazeli H, Sadighian H, Nasr Esfahani B, Pourmand MR. Identification of class-1 integron and various β-lactamase classes among clinical isolates of Pseudomonas aeruginosa at children's medical center hospital. J Med Bacteriol. 2012;1(3-4):25-36. [Link]
46. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074-9. [Link] [DOI:10.1128/JCM.42.5.2074-2079.2004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.