Zinc Oxide Nanoparticles: A Promising Solution for Controlling the Growth of Gentamicin-Resistant Uropathogenic Escherichia coli

Document Type : Original Research

Authors
1 Chemical Engineering Group, Mazandaran Institute of Technology, Babol, Iran
2 Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
3 Biotechnology Research Laboratory, Faculty of Chemical Engineering, Noshirvani University of Technology, Babol, Iran
Abstract
Backgrounds: Uropathogenic Escherichia coli is one of the most important etiological agents of UTI. The aim of this study was to investigate the antibacterial effects of zinc oxide nanoparticles (ZnONPs) on aminoglycoside-resistant E. coli isolates from patients with UTI.

Materials & Methods: After identifying E. coli strains in 100 out of 250 urine samples, antibiotic susceptibility was evaluated against six antibiotic classes (with emphasis on aminoglycosides) by disk diffusion method according to CLSI-2020 guidelines. The presence of aac (6')-Ie-aph (2'') gene in isolates was investigated by PCR. Antibacterial properties and minimum inhibitory concentration (MIC) of zinc oxide nanoparticles were evaluated by agar well diffusion and broth microdilution assays, respectively.

Findings: Among 100 E. coli isolates, the highest and lowest antibiotic resistance rates were observed against tetracycline (70%) and ofloxacin (10%), respectively. Of 30 gentamicin-resistant E. coli isolates, 17 (56.5%) isolates harbored the aac (6')-Ie-aph (2'') gene. In agar well diffusion assay, 22 (74%) gentamicin-resistant isolates were eliminated by zinc oxide nanoparticles at a concentration of 150 mg/L, while ZnONPs at 300 mg/L could eliminate all gentamicin-resistant isolates. Furthermore, ZnONPs could inhibit all bacteria at a concentration of 200 μg/mL (MIC90 ≥ 100).

Conclusion: Spread of the aac(6')-Ie-aph(2'') gene could increase gentamicin resistance among E. coli strains causing UTI. Given the favorable antibacterial effects of zinc oxide nanoparticles in vitro, the clinical application of these nanoparticles in the treatment of UTIs caused by multidrug-resistant E. coli could be investigated in future studies.

Keywords

Subjects


1. Hasani L, Fozouni L. Study of Antibacterial Activity of Gentamicin-Cetirizine on Uropathogenic Escherichia coli Isolates. IEM.2021, 7(1):37-43. doi:10.29252/iem.7.1.37.
2.Deter HS, Hossain T, Butzin NC. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli. Sci. Rep.2021; 11, 6112 (2021). doi:10.1038/s41598-021-85509-7.
3.Flores-Mireles AL, Walker JN, Capron M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269-84. doi: 10.1038/nrmicro3432.
4.Nobel FA, Akter Sh, Jebin RA, Datta S . Prevalence of multidrug resistance patterns of Escherichia coli from suspected urinary tract infection in Mymensingh city, Bangladesh. J Adv Biotechnol Exp Ther. 2021; 4(3): 256-64. doi: 10.5455/jabet.2021.d126.
5.Nji E, Kazibwe J, Hambridge T, Joko C A
Larbi AA, Okyerewaa Damptey LA, et al . High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 2021; 11:3372. doi:10.1038/s41598-021-82693-4.
6.Ho PL, Wong RC, Yip KS, Loke SL, Leung MS, Mak GC,
et al. Antimicrobial
resistance in Escherichia coli outpatient urinary isolates from women:
emerging multidrug resistance phenotypes. Diagn Microbiol Infect Dis.2007;
59 (4), 439–45. doi: 10.1016/j.diagmicrobio.2007.06.012.
7.Behnood A, Farajnia S, Moaddab SR, Ahdi-Khosroshahi S, Katayounzadeh A. Prevalence of aac(6')-Ie-aph(2'')-Ia resistance gene and its linkage to Tn5281 in Enterococcus faecalis and Enterococcus faecium isolates from Tabriz hospitals. Iran J Microbiol. 2013;5(3):203-8. PMID: 24475324.
8.Ibrahem E, Thalij, K, Saleh M, Badawy A. Biosynthesis of zinc oxide nanoparticles and assay of antibacterial activity. Am. J. Biochem. Biotechnol. 13, 63–69. doi: 10.3844/ajbbsp.2017.63.69.
9. Fozouni L, Javidmehr S, Barghamadi H, Mazandarani A, Rouhafza S. Antibacterial Effect of Zinc Oxide Nanoparticles on GroupA β-Hemolytic Streptococci with Macrolide Resistance Isolated from University Student Carriers in North of Iran. Int J Infect. 2019; 6(1): e85732. doi: 10.5812/iji.85732.
10. Manuselis M. Textbook of Diagnostic Microbiology: 5th Edition. SAUNDERS, 2015
11. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; 30th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2020.
12. Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, et al. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol. 2004; 42(12): 5444–52. doi: 10.1128/JCM.42.12.5444-5452.2004.
13.Bader MS, Haeboldt J, Brooks A. Managment of complicated urinary tract infection in the era of antimicrobial resistance. Postgrad Med. 2010;122(6):7-15. doi: 10.3810/pgm.2010.11.2217.
14.Griebling TL. Urologic diseases in America project trends in resource use for urinary tract infections in women. J Urol 2005 Apr;173(4):1281-7. doi: 10.1097/01.ju.0000155596.98780.82.
15.Behrooozi A, Rahbar M, Yousefi J. A survey on epidemiology of urinary tract infections and resistance pattern of uropathogenes in an Iranian 1000-bed tertiary care hospital. Advanced Journal of Microbiology Research.2016; 4(9): 735-56.
16. Pourmand M, Keshtvarz M, Soltan Dallal M, Talebi M, Bakhtiari R, Pourmand G. Urinary tract infection in renal transplant patients in Sina University Hospital. Tehran Univ Med J. 2013; 71 (2) :114-21. [Persian]
17. Keikha M, Rava M . Trend of antibiotic resistance of Escherichia coli strains isolated from urinary tract infections in outpatient patients from Zahedan. Journal of Paramedical Sciences & Rehabilitation.2017;6(4):73-78. [Persian]
18. Neamati F, Firoozeh F, Saffary M, Mousavi S G A. The prevalence of uropathogenic E. coli and detection of some virulence genes isolated from patients referred to Kashan Shahid-Beheshti hospital during 2012-2013. Feyz. 2014; 18 (3) :267-74. [Persian]
19. Laxminarayan, R. Boeckel T, Frost I, Kariuki S , Ahmed Khan E , Limmathurotsakul D, et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect Dis . 2020;20(4): e51-e60. doi: 10.1016/S1473-3099(20)30003-7.
20.Kong HS, Li XF, Wang JF, Wu MJ, Chen X, Yang Q. Evaluation of aminoglycoside resistance phenotypes and genotyping of acetyltransferase in Escherichia coli. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2006; 35(1): 83-6. PMID: 16470926.
21. Shahid M, Malik A. Resistance due to aminoglycoside modifying enzymes in Pseudomonas aeruginosa isolates from burns patients. Indian J Med Res 2005; 122(4): 324-9. PMID: 16394325.
22.Mohmmadi-Mehr M, Feizabadi MM. Antimicrobial resistance pattern of Gram-negative bacilli isolated from patients at ICUs of Army hospitals in Iran. Iran J of Microbiol. 2011; 3(1) :26-30.
23.Ho PL, Wong RC, Lo SW, Chow KH, Wong SS, Que TL. Genetic identity of aminoglycoside- resistance genes in Escherichia coli isolates from human and animal sources. J Med Microbiol. 2010; 59(Pt 6): 702-7. doi: 10.1099/jmm.0.015032-0.
24-Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M. Mechanistic Investigation Into Antibacterial Behaviour Of Suspensions Of Zno Nanoparticles Against E. Coli. Journal Of Nanoparticle Research. 2010; 12(5): 1625-36. doi: 10.1007/s11051-009-9711-1.
25. Dadi R, Azouani R, Traore M, Mielcarek C, Kanaev A Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater Sci Eng C Mater Biol Appl. 2019; 104:109968. doi:10.1016/j.msec.2019.109968.
26. Hoseinzadeh, E, Samarghandi, M, Alikhani M, Asgari G, Roshanaei G. Effect of Zinc Oxide (ZnO) Nanoparticles on Death Kinetic of Gram-Negative and Positive Bacterium. JBUMS. 2012; 14 (5) :13-19. [Persian]
27. Abbasvali M, Ebrahimi Kahrizsangi A, Shahriari F. Evaluation of the Inhibitory Effects of Zinc Oxide Nanoparticles on Biofilm Formation of Some Foodborne Bacterial Pathogens . Iran J Med Microbiol. 2017; 11 (5) :115-24.[Persian]
28.Hameed ASH, Karthikeyan C, Ahamed AP, Thajuddin N, Alharbi NS, Alharbi SA, et al. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing producing Escherichia coliand Klebsiella pneumoniae. Sci Rep. 2016; 6:24312. doi: 10.1038/srep24312.
29.Zare M, Namratha K, Byrappa K, Surendra D, Yallappa S, Hungund B Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J Mater Sci Technol. 2018; 34(6):1035–43. doi:10.1016/j.jmst.2017.09.014
30.Kavitha T, Gopalan AI, Lee KP, Park SY Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon. 2012; 50(8):2994–00. doi:10.1016/j.carbon.2012.02.082.