Volume 10, Issue 4 (2024)                   IEM 2024, 10(4): 269-276 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami M, Aghamohammad S, Asghari S, Salehian M, Davoudi Badabi A, Ahanjan M. Prevalence of Class I Integron Gene in Carbapenem-Resistant Enterobacteriaceae Strains Isolated from Hospitalized Patients. IEM 2024; 10 (4) :269-276
URL: http://iem.modares.ac.ir/article-4-63893-en.html
1- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
2- PhD of Medical Bacteriology, Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
3- Medical Student, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
4- Msc in Microbiology, Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
5- Associate Professor, Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
6- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran , Tahanjan@mazums.ac.ir
Abstract:   (440 Views)
Background: The prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is a growing global public health concern due to the significant morbidity and mortality associated with infections caused by these bacteria. The main objective of this study was to determine the prevalence of class I integron in CRE isolates collected from patients in teaching hospitals affiliated to Mazandaran University of Medical Sciences (MAZUMS).
Materials & Methods: A total of 100 Enterobacteriaceae isolates were collected during March 2022 to March 2023 from MAZUMS teaching hospitals using a consecutive sampling technique. The isolates were distinguished using standard microbiological methods. The antibiotic resistance of the isolated strains to carbapenem was subsequently detected using antibiotic discs including imipenem and meropenem. Using the disc diffusion method, 73 carbapenem-resistant isolates were identified and subsequently investigated
by genetic analysis using polymerase chain reaction (PCR).
Findings: Among the 73 carbapenem-resistant isolates, the most commonly found bacterial isolates were Klebsiella pneumoniae (39.72%), Escherichia coli (30.13%), and Serratia rubidaea (12.32%), respectively. Also, 100% of the isolates were resistant to meropenem, while these isolates showed lower resistance to imipenem (70%). Also, out of the 73 isolates, 64.38% were positive for the intI1 gene. K. pneumoniae isolates had the highest prevalence of the intI1 gene (89.65%).
Conclusion: The prevalence of class I integron among patients in MAZUMS educational hospitals is relatively high, exceeding 50%. Therefore, it is crucial to implement effective infection prevention measures and identify this gene in hospitals to hinder the rapid dissemination of these hazardous organisms.
Full-Text [PDF 503 kb]   (39 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2022/08/29 | Accepted: 2024/10/28 | Published: 2024/12/20

References
1. (1) Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl 1):S28-36. [DOI:10.1093/infdis/jiw282] [PMID] []
2. (2) Suay-García B, Pérez-Gracia MT. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) infections. Antibiotics. 2019;8(3):122. [DOI:10.3390/antibiotics8030122] [PMID] []
3. (3) Tilahun M, Kassa Y, Gedefie A, Ashagire M. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology, and novel treatment options: A review. Infect Drug Resist. 2021;14:4363-74. [DOI:10.2147/IDR.S337611] [PMID] []
4. (4) Livorsi DJ, Chorazy ML, Schweizer ML, Balkenende EC, Blevins AE, Nair R, et al. A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States. Antimicrob Resist Infect Control. 2018;7:1-9. [DOI:10.1186/s13756-018-0346-9] [PMID] []
5. (5) Codjoe FS, Donkor ES. Carbapenem resistance: A review. Med Sci. 2017;6(1):1. [DOI:10.3390/medsci6010001] [PMID] []
6. (6) Friedman ND, Carmeli Y, Walton AL, Schwaber MJ. Carbapenem-resistant Enterobacteriaceae: A strategic roadmap for infection control. Infect Control Hosp Epidemiol. 2017;38(5):580-94. [DOI:10.1017/ice.2017.42] [PMID]
7. (7) Banerjee R, Humphries R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8(4):427-39. [DOI:10.1080/21505594.2016.1185577] [PMID] []
8. (8) Shahbazi S, Karam MR, Habibi M, Talebi A, Bouzari S. Distribution of extended-spectrum β-lactam, quinolone, and carbapenem resistance genes, and genetic diversity among uropathogenic Escherichia coli isolates in Tehran, Iran. J Glob Antimicrob Resist. 2018;14:118-25. [DOI:10.1016/j.jgar.2018.03.006] [PMID]
9. (9) Shivaee A, Shahbazi S, Soltani A, Ahadi E. Evaluation of the prevalence of broad-spectrum beta-lactamases (ESBLs) and carbapenemase genes in Klebsiella pneumoniae strains isolated from burn wounds in patients referred to Shahid Motahari hospital in Tehran. Med Sci J Islamic Azad Univ. 2019;29(3):232-9. [DOI:10.29252/iau.29.3.232]
10. (10) Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. Clinical class 1 integron-integrase gene-A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ Int. 2020;135:105372. [DOI:10.1016/j.envint.2019.105372] [PMID]
11. (11) Akrami F, Rajabnia M, Pournajaf A. Resistance integrons: A mini review. Caspian J Intern Med. 2019;10(4):370-6.
12. (12) Esmaeelzadeh Dizaji R, Jahantigh M, Rashki A. The molecular survey of intI gene and antibacterial resistant in avian pathogenic Escherichia coil. Vet Res Biol Prod. 2020;33(2):68-74.
13. (13) Ghaly TM, Tetu SG, Gillings MR. Predicting the taxonomic and environmental sources of integron gene cassettes using structural and sequence homology of attC sites. Commun Biol. 2021;4(1):946. [DOI:10.1038/s42003-021-02489-0] [PMID] []
14. (14) Alikhani MY, Parsavash S, Arabestani MR, Hosseini SM. Prevalence of antibiotic resistance and class 1 integrons in clinical and environmental isolates of Pseudomonas aeruginosa. Avicenna J Clin Microbiol Infect. 2017;4(4):12086. [DOI:10.5812/ajcmi.12086]
15. (15) Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, et al. Antibiotic resistance in bacteria-A review. Antibiotics. 2022;11(8):1079. [DOI:10.3390/antibiotics11081079] [PMID] []
16. (16) Wang T, Zhu Y, Zhu W, Cao M, Wei Q. Molecular characterization of class 1 integrons in carbapenem-resistant Enterobacterales isolates. Microb Pathog. 2023;177:106051. [DOI:10.1016/j.micpath.2023.106051] [PMID]
17. (17) Shahkolahi S, Shakibnia P, Shahbazi S, Sabzi S, Badmasti F, Asadi Karam MR, et al. Detection of ESBL and AmpC producing Klebsiella pneumoniae ST11 and ST147 from urinary tract infections in Iran. Acta Microbiol Immunol Hung. 2022;69(4):303-13. [DOI:10.1556/030.2022.01808] [PMID]
18. (18) Taati Moghadam M, Hossieni Nave H, Mohebi S, Norouzi A. The evaluation of connection between integrons class I and II and ESBL-producing and non-ESBL Klebsiella pneumoniae isolated from clinical samples, Kerman. Iran J Med Microbiol. 2016;10(4):1-9.
19. (19) Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, et al. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother. 2001;45(3):723-6. [DOI:10.1128/AAC.45.3.723-726.2001] [PMID] []
20. (20) Kim SH, Kim GR, Jeong J, Kim S, Shin JH. Prevalence and characteristics of carbapenemase-producing Enterobacteriaceae in three tertiary-care Korean university hospitals between 2017 and 2018. Jpn J Infect Dis. 2020;73(6):431-6. [DOI:10.7883/yoken.JJID.2020.043] [PMID]
21. (21) Yan J, Pu S, Jia X, Xu X, Yang S, Shi J, et al. Multidrug resistance mechanisms of carbapenem resistant Klebsiella pneumoniae strains isolated in Chongqing, China. Ann Lab Med. 2017;37(5):398-407. [DOI:10.3343/alm.2017.37.5.398] [PMID] []
22. (22) Liu M, Liu J, Ma J, Li W, Zhao X, Jia W, et al. Antimicrobial resistance and molecular characterization of gene cassettes from class 1 integrons in carbapenem-resistant Escherichia coli strains. Microb Pathog. 2022;170:105669. [DOI:10.1016/j.micpath.2022.105669] [PMID]
23. (23) Kargar M, Mohammadalipour Z, Doosti A, Lorzadeh S, Moein Jahromi F. Monitoring of class1 integrons in diarrheagenic E. coli strains isolated from children in Yasouj. Biol J Microorg. 2015;4(14):131-40.
24. (24) Wang H, Yan Z, Mu L, Gao XY, Li JY, Hu ZD, et al. Molecular and clinical characteristics of carbapenem-resistant Enterobacteriaceae isolates collected at a tertiary hospital in northern China. Trans R Soc Trop Med Hyg. 2023;117(1):55-7. [DOI:10.1093/trstmh/trac059] [PMID]
25. (25) Jabalameli L, Rahmatpanah M, Gomar H, Ashkarmeidani MS, Pabandi JJ. Evaluating the antibiotic resistant pattern and detecting the presence of class 1 integron genes among Klebsiella pneumoniae isolated from urine samples in Alborz province. New Cell Mol Biotech J. 2022;12(45):39-50.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.