Volume 9, Issue 3 (2023)                   IEM 2023, 9(3): 265-276 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Srinivasan K, Chidambaram Y, Jenil Dhas C, Petchiappan V, R J, Kumar S S. Comparative Analysis of Laboratory Profiles and Clinical Outcomes in COVID-19 Patients with and without Diabetes: A Single Center Study. IEM 2023; 9 (3) :265-276
URL: http://iem.modares.ac.ir/article-4-70022-en.html
1- Assistant Professor, Department of General Medicine, PSG Institute of Medical Science and Research
2- Assistant Professor, Department of General Medicine, PSG Institute of Medical Science and Research , yoganathancc@gmail.com
3- Associate Professor, Department of General Medicine, PSG Institute of Medical Science and Research
4- Professor, Department of General Medicine, PSG Institute of Medical Science and Research
Abstract:   (335 Views)
Background: The present study aimed to compare the clinical outcome as well as laboratory and clinical profiles of Coronavirus disease 2019 (COVID-19) patients with and without diabetes.
Materials & Methods: The present study is a retrospective study that included 266 non-diabetic and 259 diabetic patients who were admitted to a tertiary healthcare center in South India between March 2021 to April 2021.The objective of the study was to compare the clinical outcome and laboratory profiles of COVID-19 patients with and without diabetes. Patients aged 18 years or above, diagnosed with COVID-19 by either RT-PCR and/or HRCT chest as well as diagnosed to be diabetic or non-diabetic were included in the study. After observing inclusion and exclusion criteria, the study included patients whose medical records were scrutinized, and data was analyzed using SPSS v 28.0 and the continuous variables were expressed in mean, standard deviation, minimum and maximum value. The categorical variables are expressed in frequency and percentage. Comparison was done using binomial test and Mann-Whitney U test while association was tested using Fischer exact test.
Findings: Primary outcomes show that higher number of patients with diabetes (84.94%) presented with abnormal Interleukin-6 (IL-6) levels and this difference was found to a statistically significant (p<0.001). Hypertension was the most common comorbidity among both diabetic (46.72%) and non-diabetic (33.52%) patients and it was shown to be associated with clinical outcome and oxygen requirement (p<0.001). A significant difference was observed in the mean score of age, total count, IL-6 and number of days admitted between COVID-19 subjects of both groups with the mean being higher in the group of patients with diabetes (p<0.001).
Conclusion: The results of the present study reinforce available evidence that IL-6 levels can be used to ascertain progression, morbidity, and mortality to ensure proper management of COVID-19 patients and that diabetes state results in higher total count, IL-6 and number of days admitted.
Full-Text [PDF 477 kb]   (126 Downloads)    
Article Type: Original Research | Subject: Virology
Received: 2023/06/23 | Accepted: 2023/10/15 | Published: 2023/10/18

References
1. 1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-95. doi: 10.1016/j.ijid.2020.03.017. [DOI:10.1016/j.ijid.2020.03.017] [PMID] []
2. Eastin C, Eastin T. Clinical characteristics of Coronavirus Disease 2019 in China. J Emerg Med. 2020; 58(4): 711-712. [DOI:10.1016/j.jemermed.2020.04.004] []
3. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab. 2020;318:E736-E744 [DOI:10.1152/ajpendo.00124.2020] [PMID] []
4. Parasher A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgrad Med J. 2021;97(1147):312-320. doi: 10.1136/postgradmedj-2020-138577. [DOI:10.1136/postgradmedj-2020-138577] [PMID] []
5. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580-1591. doi: 10.1016/j.ophtha.2021.04.027. [DOI:10.1016/j.ophtha.2021.04.027] [PMID]
6. Centers for Disease Control and Prevention. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services; 2020. National Diabetes Statistics Report, 2020.
7. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-1062. [DOI:10.1016/S0140-6736(20)30566-3] [PMID]
8. Ceriello A. Diabetes, D-dimer and COVID-19: The possible role of glucose control. Diabetes MetabSyndr. 2020;14(6):1987. doi: 10.1016/j.dsx.2020.10.011. [DOI:10.1016/j.dsx.2020.10.011] [PMID] []
9. Singh AK, Khunti K. COVID-19 and Diabetes. Annu Rev Med. 2022;73:129-147. doi: 10.1146/annurev-med-042220-011857. [DOI:10.1146/annurev-med-042220-011857] [PMID]
10. Kazakou P, Lambadiari V, Ikonomidis I, Kountouri A, Panagopoulos G, Athanasopoulos S, Korompoki E, Kalomenidis I, Dimopoulos MA, Mitrakou A. Diabetes and COVID-19; A Bidirectional Interplay. Front Endocrinol (Lausanne). 2022;13:780663. doi: 10.3389/fendo.2022.780663. [DOI:10.3389/fendo.2022.780663] [PMID] []
11. Khunti K, Valabhji J, Misra S. Diabetes and the COVID-19 pandemic. Diabetologia. 2023;66(2):255-266. doi: 10.1007/s00125-022-05833-z. [DOI:10.1007/s00125-022-05833-z] [PMID] []
12. Cao H, Baranova A, Wei X, Wang C, Zhang F. Bidirectional causal associations between type 2 diabetes and COVID-19. J Med Virol. 2023;95(1):e28100. doi: 10.1002/jmv.28100. [DOI:10.1002/jmv.28100] [PMID] []
13. Alkundi A, Mahmoud I, Musa A, Naveed S, Alshawwaf M. Clinical characteristics and outcomes of COVID-19 hospitalized patients with diabetes in the United Kingdom: A retrospective single centre study. Diabetes Res Clin Pract. 2020;165:108263. doi: 10.1016/j.diabres.2020.108263. [DOI:10.1016/j.diabres.2020.108263] [PMID] []
14. Shang J, Wang Q, Zhang H, Wang X, Wan J, Yan Y, et al. The Relationship Between Diabetes Mellitus and COVID-19 Prognosis: A Retrospective Cohort Study in Wuhan, China. Am J Med. 2021;134(1):e6-e14. doi: 10.1016/j.amjmed.2020.05.033. [DOI:10.1016/j.amjmed.2020.05.033] [PMID] []
15. Miri C, Charii H, Bouazzaoui MA, LaouanBrem F, Boulouiz S, Abda N, et al. D-dimer Level and Diabetes in the COVID-19 Infection. Clin Appl ThrombHemost. 2021;27:10760296211045902. doi: 10.1177/10760296211045902. [DOI:10.1177/10760296211045902] [PMID] []
16. Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Platelet Protein-Related Abnormalities in Response to Acute Hypoglycemia in Type 2 Diabetes. Front Endocrinol (Lausanne). 2021;12:651009. doi: 10.3389/fendo.2021.651009. [DOI:10.3389/fendo.2021.651009] [PMID] []
17. Smati S, Tramunt B, Wargny M, Gourdy P, Hadjadj S, Cariou B. COVID-19 and Diabetes Outcomes: Rationale for and Updates from the CORONADO Study. Curr Diab Rep. 2022;22(2):53-63. doi: 10.1007/s11892-022-01452-5. [DOI:10.1007/s11892-022-01452-5] [PMID] []
18. Pretorius E, Venter C, Laubscher GJ, Kotze MJ, Oladejo SO, Watson LR, et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148. doi: 10.1186/s12933-022-01579-5. [DOI:10.1186/s12933-022-01579-5] [PMID] []
19. Mishra Y, Pathak BK, Mohakuda SS, Tilak TVSVGK, Sen S, P H, Singh R, et al. Relation of D-dimer levels of COVID-19 patients with diabetes mellitus. Diabetes MetabSyndr. 2020;14(6):1927-1930. doi: 10.1016/j.dsx.2020.09.035. [DOI:10.1016/j.dsx.2020.09.035] [PMID] []
20. Rostami M, Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol. 2020;13(11):1265-1275. doi: 10.1080/17474086.2020.1831383. [DOI:10.1080/17474086.2020.1831383] [PMID]
21. Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021;21(1):855. doi: 10.1186/s12879-021-06536-3. [DOI:10.1186/s12879-021-06536-3] [PMID] []
22. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123-1130. doi: 10.1080/22221751.2020.1770129. [DOI:10.1080/22221751.2020.1770129] [PMID] []
23. Setyo Nugroho GM, Marhana IA, Kusumastuti EH, Semedi BP, Maimunah U, Lefi A, et al. Interleukin-6 (IL-6) expression of lung tissue in COVID-19 patient severity through core biopsy post mortem. Ann Med Surg (Lond). 2022;82:104648. doi: 10.1016/j.amsu.2022.104648. [DOI:10.1016/j.amsu.2022.104648] [PMID] []
24. Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020;111:102452. doi: 10.1016/j.jaut.2020.102452. [DOI:10.1016/j.jaut.2020.102452] [PMID] []
25. Trudel X, Brisson C, Gilbert-Ouimet M, Vézina M, Talbot D, Milot A. Long Working Hours and the Prevalence of Masked and Sustained Hypertension. Hypertension. 2020;75(2):532-538. doi: 10.1161/HYPERTENSIONAHA.119.12926. [DOI:10.1161/HYPERTENSIONAHA.119.12926] [PMID]
26. Al-Salameh A, Lanoix JP, Bennis Y, Andrejak C, Brochot E, Deschasse G, et al. Characteristics and outcomes of COVID-19 in hospitalized patients with and without diabetes. Diabetes Metab Res Rev. 2021;37(3):e3388. doi: 10.1002/dmrr.3388. [DOI:10.1002/dmrr.3388] [PMID] []
27. Choi KJ, Hong HL, Kim EJ. The Association between Mortality and the Oxygen Saturation and Fraction of Inhaled Oxygen in Patients Requiring Oxygen Therapy due to COVID-19-Associated Pneumonia. Tuberc Respir Dis (Seoul). 2021;84(2):125-133. doi: 10.4046/trd.2020.0126. [DOI:10.4046/trd.2020.0126] [PMID] []
28. Ray A, Chaudhry R, Rai S, Mitra S, Pradhan S, Sunder A, et al. Prolonged Oxygen Therapy Post COVID-19 Infection: Factors Leading to the Risk of Poor Outcome. Cureus. 2021;13(2):e13357. doi: 10.7759/cureus.13357. [DOI:10.7759/cureus.13357]
29. Parmar H, Montovano M, Banada P, Pentakota SR, Shiau S, Ma Z, et al. RT-PCR negative COVID-19. BMC Infect Dis. 2022;22(1):149. doi: 10.1186/s12879-022-07095-x. [DOI:10.1186/s12879-022-07095-x] [PMID] []
30. Gęca T, Wojtowicz K, Guzik P, Góra T. Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. Int J Environ Res Public Health. 2022;19(11):6555. doi: 10.3390/ijerph19116555. [DOI:10.3390/ijerph19116555] [PMID] []
31. Ebrahim H, Fiseha T, Ebrahim Y, Bisetegn H. Comparison of hematological parameters between type 2 diabetes mellitus patients and healthy controls at Dessie comprehensive specialized hospital, Northeast Ethiopia: Comparative cross-sectional study. PLoS One. 2022;17(7):e0272145. doi: 10.1371/journal.pone.0272145. [DOI:10.1371/journal.pone.0272145] [PMID] []
32. Nouh FA, Othman H, Gwarsha EK, Elbadry AA, Alabdali A, Barassi IF, et al. Apparent Association of Insulin With Interleukin-6 (IL-6) in Severe COVID-19 Patients Having Chronic Disease Comorbidities. Cureus. 2022;14(4):e23790. doi: 10.7759/cureus.23790. [DOI:10.7759/cureus.23790]
33. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36(7):e3319. doi: 10.1002/dmrr.3319. [DOI:10.1002/dmrr.3319] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.