Volume 11, Issue 1 (2025)                   IEM 2025, 11(1): 23-31 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rasmi Hassan I, Rezatofighi S E, Motamedi H, Rahman T. Frequency of Extensively Drug Resistance and Metallo-Beta-Lactamase Genes among Uropathogenic Escherichia coli Isolates from Nasiriya, Iraq. IEM 2025; 11 (1) :23-31
URL: http://iem.modares.ac.ir/article-4-74084-en.html
1- Department of Biology; Faculty of Science; Shahid Chamran University of Ahvaz; Ahvaz; Iran
2- Department Of Biology; Faculty of Science; Shahid Chamran University of Ahvaz; Ahvaz; Iran , e.tofighi@scu.ac.ir
3- Department of Biology; Faculty of Science; Shahid Chamran University of Ahvaz; Ahvaz; iran
4- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
Abstract:   (505 Views)
Background: This study aimed to evaluate the frequency of extensively drug-resistant (XDR) uropathogenic Escherichia coli (UPEC) isolates and to detect their metallo-beta-lactamase (MBL) genes.
Materials & Methods: Three hundred urine samples collected from patients with suspected urinary tract infection (UTI) were evaluated for the presence of UPEC isolates. These isolates were subjected to antibiotic susceptibility testing to determine multidrug-resistance (MDR) and XDR profiles. Imipenem or meropenem-resistant isolates were evaluated for MBL production using modified carbapenem inactivation (mCIM) and EDTA-CIM (eCIM) methods. PCR was carried out to identify the presence of MBL genes, including blaGIM, blaSIM, blaVIM-1, blaVIM-2, blaSPM-1, blaIMP-1, blaIMP-2, blaNDM, and blaKPC.
Findings: Out of 300 urine samples, 200 (66.66%) were positive for UTI. Among these, 150 were caused by UPEC. The highest antimicrobial resistance was against cefepime (88%) and ampicillin (85.3%), while the highest susceptibility was against imipenem (91.7%) and fosfomycin (84%). MDR and XDR profiles were detected in 145 (96.66%) and 5 (3.33%) isolates, respectively.  Overall, five UPEC isolates were XDR and resistant to imipenem and meropenem. All these isolates were positive for mCIM, while four were positive for eCIM. The blaNDM gene was found in all five isolates, while the other MBL genes were not found.
Conclusion: The existence of MDR and XDR bacteria poses a significant risk to public health. blaNDM is circulating in UPEC strains at least in Nasiriya province, Iraq. This could lead to increased resistance to carbapenems among Enterobacteriaceae, a serious threat to public health.
Full-Text [PDF 565 kb]   (61 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2024/02/29 | Accepted: 2024/12/9 | Published: 2025/02/22

References
1. Foxman B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am. 2014;28(1):1-13. [DOI:10.1016/j.idc.2013.09.003] [PMID]
2. Shivaee A, Mirshekar M. Association between ESBL genes and quinolone resistance in uropathogenic Escherichia coli isolated from patients with urinary tract infection. Infect Epidemiol Microbiol. 2019;5(1):15-23.
3. Shahbazi R, Salmanzadeh-Ahrabi S, Aslani MM, Alebouyeh M, Falahi J, Nikbin VS. The genotypic and phenotypic characteristics contributing to high virulence and antibiotics resistance in Escherichia coli O25-B2-ST131 in comparison to non-O25-B2-ST131. BMC Pediatr. 2023;23(1):59. [DOI:10.1186/s12887-023-03866-w] [PMID] []
4. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
5. Tewari R, Mitra SD, Ganaie F. Prevalence of extended spectrum β-lactamase, AmpC β-lactamase, and metallo β-lactamase mediated resistance in Escherichia coli from diagnostic and tertiary healthcare centers in south Bangalore, India. Int J Res Med Sci. 2018;6(4):1308-13. [DOI:10.18203/2320-6012.ijrms20181288]
6. World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. Geneva: World Health Organization; 2019.
7. El-Kazzaz SS, Abou El-khier NT. AmpC and metallo betalactamase producing Gram negative bacteria in patients with hematological malignancy. Afr J Microbiol Res. 2015;9(18):1247-54. [DOI:10.5897/AJMR2015.7435]
8. Hussein NH. Emergence of NDM-1 among carbapenem-resistant Klebsiella pneumoniae in Iraqi hospitals. Acta Microbiol Immunol Hung. 2018;65(2):211-27. [DOI:10.1556/030.64.2017.026] [PMID]
9. Al-Sa'ady AT, Mohammad GJ, Hussen BM. Genetic relation and virulence factors of carbapenemase-producing uropathogenic Escherichia coli from urinary tract infections in Iraq. Gene Rep. 2020;21:100911. [DOI:10.1016/j.genrep.2020.100911]
10. Al-Moslem H, Rezatofighi SE, AL-Luaibi YYY., Akhoond MR. Investigation of virulence factors and their relationship with antimicrobial resistance among uropathogenic Escherichia coli isolates identified from patients in Basrah city, Iraq. Acta Microbiol Hell. 2023;68(2):105-1115.
11. Mahmoodi F, Rezatofighi SE, Akhoond MR. Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BMC Microbiol. 2020;20(1):1-11. [DOI:10.1186/s12866-020-02051-8] [PMID] []
12. Taqi RA, Hadi OM. Genotypic detection of New-Delhi metallo-β-lactamase producing carbapenem resistant Escherichia coli in holy Karbala province, Iraq. Egypt Acad J Biol. 2023;15(2):419-33. [DOI:10.21608/eajbsc.2023.320708]
13. Clinical and Laboratory Standards Institute. M100: Performance standards for antimicrobial susceptibility testing. 29th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2022.
14. Paniagua-Contreras GL, Monroy-Pe'rez E, Rodrı'guez-Moctezuma JR, Domı'nguez-Trejo P, Vaca-Paniagua F, Vaca S. Virulence factors, antibiotic resistance phenotypes, and O-serogroups of Escherichia coli strains isolated from community acquired urinary tract infection patients in Mexico. J Microbiol Immunol Infect. 2017;50(4):478-85. [DOI:10.1016/j.jmii.2015.08.005] [PMID]
15. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by Gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol. 2003;41(12):5407-13. [DOI:10.1128/JCM.41.12.5407-5413.2003] [PMID] []
16. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother. 2007;59(2):321-2. [DOI:10.1093/jac/dkl481] [PMID]
17. Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase, and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891-7. [DOI:10.1128/AAC.44.4.891-897.2000] [PMID] []
18. Tsakris A, Pournaras S, Woodford N, Palepou MF, Babini GS, Douboyas J, et al. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J Clin Microbiol. 2000;38(3):1290-2. [DOI:10.1128/JCM.38.3.1290-1292.2000] [PMID] []
19. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046-54. [DOI:10.1128/AAC.00774-09] [PMID] []
20. Zangane Matin F, Rezatofighi SE, Roayaei Ardakani M, Akhoond MR, Mahmoodi F. Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. Ann Clin Microbiol Antimicrob. 2021;20:1-13. [DOI:10.1186/s12941-021-00457-4] [PMID] []
21. Wang M, Wang W, Niu Y, Liu T, Li L, Zhang M, et al. A clinical extensively-drug resistant (XDR) Escherichia coli and role of its β-lactamase genes. Front Microbiol. 2020;11:590357. [DOI:10.3389/fmicb.2020.590357] [PMID] []
22. Allami M, Bahreini M, Sharifmoghadam MR. Antibiotic resistance, phylogenetic typing, and virulence genes profile analysis of uropathogenic Escherichia coli isolated from patients in southern Iraq. J App Genet. 2022;63(2):401-12. [DOI:10.1007/s13353-022-00683-2] [PMID]
23. Al-Harmoosh RA, Jarallah EM. First detection of the blaNDM-1 and blaNDM-2 genes in clinical isolates of Acinetobacter baumannii in Hillah hospitals, Iraq. Int J Adv Res. 2015;3(10):1407-16.
24. Al-Hasnawy HH, Judi MR, Hamza HJ. The dissemination of multidrug resistance (MDR) and extensively drug resistant (XDR) among uropathogenic E. coli (UPEC) isolates from urinary tract infection patients in Babylon province, Iraq. Baghdad Sci J. 2019;16(4):986-92. [DOI:10.21123/bsj.2019.16.4(Suppl.).0986]
25. Al-Hasani HM, Al-Rubaye DS, Abdelhameed A. The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) in Iraqi clinical isolates of Escherichia coli. J Popul Ther Clin Pharmacol. 2023;30(5):469-82. [DOI:10.47750/jptcp.2023.30.05.047]
26. Al-Hasso M. Determination of antimicrobial resistance profiles and molecular detection of carbapenemases in Gram negative bacilli isolated from different sources in Mosul city, Iraq. Kuwait J Sci. 2023;50(1A):1-15.
27. Ahmed HJ, Ibrahim AH, Al-Rawi SS, Ganjo AR, Saber HF. Molecular characterization of carbapenem resistant Escherichia coli and Klebsiella pneumoniae in Erbil, Iraq. J Popul Ther Clin Pharmacol. 2023;30(4):457-63. [DOI:10.47750/jptcp.2023.30.04.044]
28. Albadery AA, Al-Amara SS, Al-Abdullah AA. Phenotyping and genotyping evaluation of E. coli produces carbapenemase isolated from cancer patients in Al-Basrah, Iraq. Arch Razi Inst. 2023;78(3):823-9.
29. Johnson AP, Woodford N. Global spread of antibiotic resistance: The example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol. 2013;62(4):499-513. [DOI:10.1099/jmm.0.052555-0] [PMID]
30. Hasoon NA, Hamed SL. Molecular characterization of carbapenemase-producing Gram-negative bacteria isolated from clinical specimens in Baghdad, Iraq. J Pure Appl Microbiol. 2019;13(2):1031-40. [DOI:10.22207/JPAM.13.2.41]
31. Souli M, Kontopidou FV, Papadomichelakis E, Galani I, Armaganidis A, Giamarellou H, et al. Clinical experience of serious infections caused by Enterobacteriaceae producing VIM-1 metallo-beta-lactamase in a Greek university hospital. Clin Infect Dis. 2008;46(6):847-54. [DOI:10.1086/528719] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.