1. Mazzuco, R. and B.M.Z. Abdalla, Botulinum toxin for special conditions: gummy smile-advanced points and indications. Minimally Invasive Aesthetic Procedures: A Guide for Dermatologists and Plastic Surgeons, 2020: p. 245-248. [
DOI:10.1007/978-3-319-78265-2_36]
2. Harms, A., et al., Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Molecular cell, 2018. 70(5): p. 768-784. [
DOI:10.1016/j.molcel.2018.01.003] [
PMID]
3. Do Vale, A., D. Cabanes, and S. Sousa, Bacterial toxins as pathogen weapons against phagocytes. Frontiers in microbiology, 2016. 7: p. 42. [
DOI:10.3389/fmicb.2016.00042] [
PMID] [
]
4. Rudkin, J.K., et al., Bacterial toxins: Offensive, defensive, or something else altogether? Plos pathogens, 2017. 13(9): p. e1006452. [
DOI:10.1371/journal.ppat.1006452] [
PMID] [
]
5. Popoff, M.R., Bacterial toxins, current perspectives. 2020, MDPI. p. 570. [
DOI:10.3390/toxins12090570] [
PMID] [
]
6. Pitari, G., et al., Bacterial enterotoxins are associated with resistance to colon cancer. Proceedings of the National Academy of Sciences, 2003. 100(5): p. 2695-2699. [
DOI:10.1073/pnas.0434905100] [
PMID] [
]
7. Aktories, K., Bacterial protein toxins that modify host regulatory GTPases. Nature Reviews Microbiology, 2011. 9(7): p. 487-498. [
DOI:10.1038/nrmicro2592] [
PMID]
8. Collier, R., Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon, 2001. 39(11): p. 1793-1803. [
DOI:10.1016/S0041-0101(01)00165-9] [
PMID]
9. Montecucco, C. and G. Schiavo, Mechanism of action of tetanus and botulinum neurotoxins. Molecular microbiology, 1994. 13(1): p. 1-8. [
DOI:10.1111/j.1365-2958.1994.tb00396.x] [
PMID]
10. Obrig, T.G., Escherichia coli Shiga toxin mechanisms of action in renal disease. Toxins, 2010. 2(12): p. 2769-2794. [
DOI:10.3390/toxins2122769] [
PMID] [
]
11. Martın, M., et al., Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. International Journal of Food Microbiology, 2004. 94(3): p. 279-286. [
DOI:10.1016/j.ijfoodmicro.2004.01.011] [
PMID]
12. Dubreuil, J.D., The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Current issues in molecular biology, 2012. 14(2): p. 71-82.
13. Masuyer, G., et al., Engineered botulinum neurotoxins as new therapeutics. Annual review of pharmacology and toxicology, 2014. 54: p. 27-51. [
DOI:10.1146/annurev-pharmtox-011613-135935] [
PMID]
14. Hughes, C., P. Stanley, and V. Koronakis, E. coli hemolysin interactions with prokaryotic and eukaryotic cell membranes. Bioessays, 1992. 14(8): p. 519-525. [
DOI:10.1002/bies.950140804] [
PMID]
15. Edae, M. and E.K. Wabalo, Bacterial toxins and their modes of action: a review article. J Med Physiol Biophys, 2019. 55.
16. Böhnel, H. and F. Gessler, Botulinum toxins-cause of botulism and systemic diseases? Veterinary research communications, 2005. 29: p. 313-345. [
DOI:10.1023/B:VERC.0000048489.45634.32] [
PMID]
17. Los, F.C., et al., Role of pore-forming toxins in bacterial infectious diseases. Microbiology and Molecular Biology Reviews, 2013. 77(2): p. 173-207. [
DOI:10.1128/MMBR.00052-12] [
PMID] [
]
18. Tamura, B.M. and B. Chang, Botulinum toxin: application into acupuncture points for migraine. Dermatologic surgery, 2003. 29(7): p. 749-754.
https://doi.org/10.1046/j.1524-4725.2003.29183.x [
DOI:10.1097/00042728-200307000-00014] [
PMID]
19. Takeda, T., et al., Epitope mapping and characterization of antigenic determinants of heat-stable enterotoxin (STh) of enterotoxigenic Escherichia coli by using monoclonal antibodies. Infection and immunity, 1993. 61(1): p. 289-294. [
DOI:10.1128/iai.61.1.289-294.1993] [
PMID] [
]
20. Piontek, A., et al., Targeting claudin‐overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin. Molecular Oncology, 2020. 14(2): p. 261-276. [
DOI:10.1002/1878-0261.12615] [
PMID] [
]
21. Xu, J., et al., Identification and synthesis of an efficient multivalent E. coli heat labile toxin inhibitor _ A dynamic combinatorial chemistry approach. Bioorganic & Medicinal Chemistry, 2020. 28(9): p. 115436. [
DOI:10.1016/j.bmc.2020.115436] [
PMID]
22. Mahanti, A., et al., Characterization of methicillin-resistant and enterotoxins producing Staphylococcus aureus in bovine milk in India. Journal of Agriculture and Food Research, 2020. 2: p. 100017. [
DOI:10.1016/j.jafr.2019.100017]
23. Larpin, Y., et al., Bacterial pore‐forming toxin pneumolysin: Cell membrane structure and microvesicle shedding capacity determines differential survival of immune cell types. The FASEB Journal, 2020. 34(1): p. 1665-1678. [
DOI:10.1096/fj.201901737RR] [
PMID]
24. Giesbrecht, K., et al., Streptococcal pyrogenic exotoxin A-stimulated monocytes mediate regulatory T-cell accumulation through PD-L1 and kynurenine. International Journal of Molecular Sciences, 2019. 20(16): p. 3933. [
DOI:10.3390/ijms20163933] [
PMID] [
]
25. Parrish, K.L., et al., Carriage of the toxic shock syndrome toxin gene by contemporary community-associated Staphylococcus aureus isolates. Journal of the Pediatric Infectious Diseases Society, 2019. 8(5): p. 470-473. [
DOI:10.1093/jpids/piy098] [
PMID] [
]
26. Wang, H., et al., Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity. Toxins, 2019. 11(1): p. 24. [
DOI:10.3390/toxins11010024] [
PMID] [
]
27. Xu, S.X., et al., Superantigens modulate bacterial density during Staphylococcus aureus nasal colonization. Toxins, 2015. 7(5): p. 1821-1836. [
DOI:10.3390/toxins7051821] [
PMID] [
]
28. Sampedro, G.R., et al., Targeting Staphylococcus aureus α-toxin as a novel approach to reduce severity of recurrent skin and soft-tissue infections. The Journal of infectious diseases, 2014. 210(7): p. 1012-1018. [
DOI:10.1093/infdis/jiu223] [
PMID] [
]
29. Cleret-Buhot, A., et al., Both lethal and edema toxins of Bacillus anthracis disrupt the human dendritic cell chemokine network. 2012. [
DOI:10.1371/journal.pone.0043266] [
PMID] [
]
30. Carter, G.P., J.I. Rood, and D. Lyras, The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends in microbiology, 2012. 20(1): p. 21-29. [
DOI:10.1016/j.tim.2011.11.003] [
PMID]
31. Bharati, K. and N.K. Ganguly, Cholera toxin: a paradigm of a multifunctional protein. The Indian journal of medical research, 2011. 133(2): p. 179.
32. Mestre, M.B., et al., α-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus infected cells. Autophagy, 2010. 6(1): p. 110-125. [
DOI:10.4161/auto.6.1.10698] [
PMID]
33. Bukowski, M., B. Wladyka, and G. Dubin, Exfoliative toxins of Staphylococcus aureus. Toxins, 2010. 2(5): p. 1148-1165. [
DOI:10.3390/toxins2051148] [
PMID] [
]
34. Carbonetti, N.H., Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future microbiology, 2010. 5(3): p. 455-469. [
DOI:10.2217/fmb.09.133] [
PMID] [
]
35. Genth, H., et al., Clostridium difficile toxins: more than mere inhibitors of Rho proteins. The international journal of biochemistry & cell biology, 2008. 40(4): p. 592-597. [
DOI:10.1016/j.biocel.2007.12.014] [
PMID]
36. Vojtova, J., J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Current opinion in microbiology, 2006. 9(1): p. 69-75. [
DOI:10.1016/j.mib.2005.12.011] [
PMID]
37. Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clinical microbiology reviews, 2005. 18(2): p. 247-263. [
DOI:10.1128/CMR.18.2.247-263.2005] [
PMID] [
]
38. Alileche, A., et al., Anthrax lethal toxin-mediated killing of human and murine dendritic cells impairs the adaptive immune response. PLoS pathogens, 2005. 1(2): p. e19. [
DOI:10.1371/journal.ppat.0010019] [
PMID] [
]
39. Bhatnagar, R. and S. Batra, Anthrax toxin. Critical reviews in microbiology, 2001. 27(3): p. 167-200. [
DOI:10.1080/20014091096738] [
PMID]
40. Spaulding, A.R., et al., Staphylococcal and streptococcal superantigen exotoxins. Clinical microbiology reviews, 2013. 26(3): p. 422-447. [
DOI:10.1128/CMR.00104-12] [
PMID] [
]
41. Watson, A.R. and W.T. Lee, Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cellular immunology, 2006. 242(2): p. 80-90. [
DOI:10.1016/j.cellimm.2006.09.008] [
PMID] [
]
42. Breuer, K., A. Kapp, and T. Werfel, Bacterial infections and atopic dermatitis. Allergy, 2001. 56(11): p. 1034-1041. [
DOI:10.1034/j.1398-9995.2001.00146.x] [
PMID]
43. Pinchuk, I.V., E.J. Beswick, and V.E. Reyes, Staphylococcal enterotoxins. Toxins, 2010. 2(8): p. 2177-2197. [
DOI:10.3390/toxins2082177] [
PMID] [
]
44. Alouf, J.E., Bacterial protein toxins: an overview. Bacterial toxins: Methods and protocols, 2000: p. 1-26. [
DOI:10.1385/1-59259-052-7:1] [
PMID]
45. Donnelly, J.J. and R. Rappuoli, Blocking bacterial enterotoxins. Nature Medicine, 2000. 6(3): p. 257-258. [
DOI:10.1038/73095] [
PMID]
46. Sesardic, T., Bioassays for evaluation of medical products derived from bacterial toxins. Current opinion in microbiology, 2012. 15(3): p. 310-316. [
DOI:10.1016/j.mib.2012.05.008] [
PMID]
47. Donaldson, D.S. and N.A. Williams, Bacterial toxins as immunomodulators. Pathogen-Derived Immunomodulatory Molecules, 2009: p. 1-18. [
DOI:10.1007/978-1-4419-1601-3_1] [
PMID]
48. Alouf, J.E., D. Ladant, and M.R. Popoff, The comprehensive sourcebook of bacterial protein toxins. 2005: Elsevier.
49. Mathieu, J., Interactions between autophagy and bacterial toxins: targets for therapy? Toxins, 2015. 7(8): p. 2918-2958. [
DOI:10.3390/toxins7082918] [
PMID] [
]
50. Holst, O., Bacterial toxins: methods and protocols. Vol. 145. 2008: Springer Science & Business Media.
51. Feld, G.K., M.J. Brown, and B.A. Krantz, Ratcheting up protein translocation with anthrax toxin. Protein Science, 2012. 21(5): p. 606-624. [
DOI:10.1002/pro.2052] [
PMID] [
]
52. Weldon, J.E. and I. Pastan, A guide to taming a toxin-recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. The FEBS journal, 2011. 278(23): p. 4683-4700. [
DOI:10.1111/j.1742-4658.2011.08182.x] [
PMID] [
]
53. Liu, S., M. Moayeri, and S.H. Leppla, Anthrax lethal and edema toxins in anthrax pathogenesis. Trends in microbiology, 2014. 22(6): p. 317-325. [
DOI:10.1016/j.tim.2014.02.012] [
PMID] [
]
54. Abrami, L., et al., Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. The Journal of cell biology, 2003. 160(3): p. 321-328. [
DOI:10.1083/jcb.200211018] [
PMID] [
]
55. Lin, J.E., et al., Bacterial heat-stable enterotoxins: translation of pathogenic peptides into novel targeted diagnostics and therapeutics. Toxins, 2010. 2(8): p. 2028-2054. [
DOI:10.3390/toxins2082028] [
PMID] [
]
56. Kamanova, J., et al., Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. The journal of immunology, 2008. 181(8): p. 5587-5597. [
DOI:10.4049/jimmunol.181.8.5587] [
PMID]
57. von Scheidt, B., et al., Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences, 2019. 116(50): p. 25229-25235. [
DOI:10.1073/pnas.1904618116] [
PMID] [
]
58. Komiażyk, M., et al., Bacterial type AB₅ enterotoxins--structure, function and mechanism of action. Postepy biochemii, 2015. 61(4): p. 430-435.
59. Ogasawara, F., et al., Changes in the asymmetric distribution of cholesterol in the plasma membrane influence streptolysin O pore formation. Scientific reports, 2019. 9(1): p. 4548. [
DOI:10.1038/s41598-019-39973-x] [
PMID] [
]
60. Spaan, A.N., J.A. van Strijp, and V.J. Torres, Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nature Reviews Microbiology, 2017. 15(7): p. 435-447. [
DOI:10.1038/nrmicro.2017.27] [
PMID] [
]
61. Verherstraeten, S., et al., Perfringolysin O: the underrated Clostridium perfringens toxin? Toxins, 2015. 7(5): p. 1702-1721. [
DOI:10.3390/toxins7051702] [
PMID] [
]
62. Hernández-Flores, K. and H. Vivanco-Cid, Biological effects of listeriolysin O: implications for vaccination. BioMed research international, 2015. 2015. [
DOI:10.1155/2015/360741] [
PMID] [
]
63. Dramsi, S. and P. Cossart, Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. The Journal of cell biology, 2002. 156(6): p. 943-946. [
DOI:10.1083/jcb.200202121] [
PMID] [
]
64. Caiazza, N.C. and G.A. O'Toole, Alpha-toxin is required for biofilm formation by Staphylococcus aureus. Journal of bacteriology, 2003. 185(10): p. 3214-3217. [
DOI:10.1128/JB.185.10.3214-3217.2003] [
PMID] [
]
65. Ivarsson, M.E., J.C. Leroux, and B. Castagner, Targeting bacterial toxins. Angewandte Chemie International Edition, 2012. 51(17): p. 4024-4045. [
DOI:10.1002/anie.201104384] [
PMID]
66. Weerakkody, L.R. and C. Witharana, The role of bacterial toxins and spores in cancer therapy. Life sciences, 2019. 235: p. 116839. [
DOI:10.1016/j.lfs.2019.116839] [
PMID]
67. Lebrun, I., et al., Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini reviews in medicinal chemistry, 2009. 9(7): p. 820-828. [
DOI:10.2174/138955709788452603] [
PMID]
68. Lucas, F., M. Popoff, and G. Corthier, Bacterial enterotoxins: structure, mode of action. Annales de Recherches veterinaires. Annals of Veterinary Research, 1991. 22(2): p. 147-162.
69. Van Melderen, L. and M. Saavedra De Bast, Bacterial toxin-antitoxin systems: more than selfish entities? PLoS genetics, 2009. 5(3): p. e1000437. [
DOI:10.1371/journal.pgen.1000437] [
PMID] [
]
70. Doxey, A.C., M.J. Mansfield, and C. Montecucco, Discovery of novel bacterial toxins by genomics and computational biology. Toxicon, 2018. 147: p. 2-12. [
DOI:10.1016/j.toxicon.2018.02.002] [
PMID]
71. Lucas, R., et al., Impact of bacterial toxins in the lungs. Toxins, 2020. 12(4): p. 223. [
DOI:10.3390/toxins12040223] [
PMID] [
]
72. Eby, J.C., et al., Review of the neutrophil response to Bordetella pertussis infection. FEMS Pathogens and Disease, 2015. 73(9): p. ftv081. [
DOI:10.1093/femspd/ftv081] [
PMID] [
]
73. Zhang, S. and G.C. Stewart, Staphylococcal enterotoxins, in Staphylococcus aureus Infection and Disease. 2001, Springer. p. 117-136. [
DOI:10.1007/0-306-46848-4_7]
74. Rousset, E. and J. Dubreuil, Bacterial enterotoxin receptors. Veterinary Research, 2000. 31(4): p. 413-435. [
DOI:10.1051/vetres:2000129] [
PMID]
75. Jurėnas, D., et al., Biology and evolution of bacterial toxin-antitoxin systems. Nature Reviews Microbiology, 2022. 20(6): p. 335-350. [
DOI:10.1038/s41579-021-00661-1] [
PMID]
76. Choe, S., et al., & Eisenberg, D.(1992). The crystal structure of diphtheria toxin. Nature. 357: p. 216-222. [
DOI:10.1038/357216a0] [
PMID]
77. Thorpe, P., et al., Toxicity of diphtheria toxin for lymphoblastoid cells is increased by conjugation to antilymphocytic globulin. Nature, 1978. 271(5647): p. 752-755. [
DOI:10.1038/271752a0] [
PMID]
78. Schiavo, G. and F.G. van der Goot, The bacterial toxin toolkit. Nature Reviews Molecular Cell Biology, 2001. 2(7): p. 530-537. [
DOI:10.1038/35080089] [
PMID]
79. Heggelund, J.E., et al., Towards new cholera prophylactics and treatment: Crystal structures of bacterial enterotoxins in complex with GM1 mimics. Scientific Reports, 2017. 7(1): p. 2326. [
DOI:10.1038/s41598-017-02179-0] [
PMID] [
]
80. Molejon, N.A., et al., Selection of G-rich ssDNA aptamers for the detection of enterotoxins of the cholera toxin family. Analytical Biochemistry, 2023. 669: p. 115118. [
DOI:10.1016/j.ab.2023.115118] [
PMID]
81. Zahaf, N.-I. and G. Schmidt, Bacterial toxins for cancer therapy. Toxins, 2017. 9(8): p. 236. [
DOI:10.3390/toxins9080236] [
PMID] [
]
82. Lax, A.J., Bacterial toxins and cancer-a case to answer? Nature Reviews Microbiology, 2005. 3(4): p. 343-349. [
DOI:10.1038/nrmicro1130] [
PMID]
83. Rosadi, F., C. Fiorentini, and A. Fabbri, Bacterial protein toxins in human cancers. FEMS Pathogens and Disease, 2016. 74(1): p. ftv105. [
DOI:10.1093/femspd/ftv105] [
PMID]
84. Lahiri, S., Bacterial toxins--an overview. Journal of Natural Toxins, 2000. 9(4): p. 381-408.