Volume 11, Issue 1 (2025)                   IEM 2025, 11(1): 77-93 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amiri A, Nouriyeh P, Zibaei M, Zibaei S, Firoozeh F. Bacterial Protein Toxins with Emphasizing on Bacterial Enterotoxins. IEM 2025; 11 (1) :77-93
URL: http://iem.modares.ac.ir/article-4-74495-en.html
1- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
2- Razi Vaccine and Serum Research Institute, Education and Extension Organization (AREEO), Karaj, Iran
3- Department of Parasitology and Mycology, Alborz University of Medical Sciences, Karaj, Iran. Kosar Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
4- Student Research Commitee, Alborz University of Medical Sciences, Karaj, Iran
5- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran. Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran , ffiroozeh@ut.ac.ir
Abstract:   (402 Views)
Backgrounds: Bacterial toxins are virulence factors that manipulate the functions of host cells and take over the control of main processes of living organisms. Importantly, they are non-curable, non-contagious, and non-infectious by chemotherapeutic agents and/or antibiotics. The multifactorial nature of the toxicity of bacterial toxins has made their investigation more complicated.
Methods: In this review, we investigated some biological activities, structure, and action mechanism of several bacterial toxins using data from studies published in major international databases.
Conclusion: Bacterial protein toxins are very diverse based on size, structure and mode of action. Based on the structure and the type of cell surface receptors, the mentioned toxins have activity on the cell surface (signal transmission, pore formation) or have intracellular activity. Many bacterial protein toxins have the ability to enter the cell by the endocytosis mechanism, and according to their intracellular targets, they can induce different intracellular effects, which in many cases lead to the death of the target cell. A large and interesting group of bacterial toxins are enterotoxins. The majority of toxigenic bacteria are environmental, and the digestive system is one of the most common ways of entering or encountering environmental bacteria or their toxic products through eating food. Many enteropathogenic bacteria produce enterotoxins in food, in the intestinal lumen or on the surface of the intestinal mucosa. Also, some entero-invasive bacteria penetrate the cells by inoculating some toxins into the intestinal cells. The challenge of studying bacterial toxins and enterotoxins lies in their complex nature and the need for comprehensive characterization, but the future holds promise with advancements in technology and interdisciplinary approaches to further our understanding and develop effective strategies for prevention and treatment.
Full-Text [PDF 590 kb]   (116 Downloads)    
Article Type: Systematic Review | Subject: Bacteriology
Received: 2024/03/29 | Accepted: 2024/12/27 | Published: 2025/02/22

References
1. Mazzuco, R. and B.M.Z. Abdalla, Botulinum toxin for special conditions: gummy smile-advanced points and indications. Minimally Invasive Aesthetic Procedures: A Guide for Dermatologists and Plastic Surgeons, 2020: p. 245-248. [DOI:10.1007/978-3-319-78265-2_36]
2. Harms, A., et al., Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Molecular cell, 2018. 70(5): p. 768-784. [DOI:10.1016/j.molcel.2018.01.003] [PMID]
3. Do Vale, A., D. Cabanes, and S. Sousa, Bacterial toxins as pathogen weapons against phagocytes. Frontiers in microbiology, 2016. 7: p. 42. [DOI:10.3389/fmicb.2016.00042] [PMID] []
4. Rudkin, J.K., et al., Bacterial toxins: Offensive, defensive, or something else altogether? Plos pathogens, 2017. 13(9): p. e1006452. [DOI:10.1371/journal.ppat.1006452] [PMID] []
5. Popoff, M.R., Bacterial toxins, current perspectives. 2020, MDPI. p. 570. [DOI:10.3390/toxins12090570] [PMID] []
6. Pitari, G., et al., Bacterial enterotoxins are associated with resistance to colon cancer. Proceedings of the National Academy of Sciences, 2003. 100(5): p. 2695-2699. [DOI:10.1073/pnas.0434905100] [PMID] []
7. Aktories, K., Bacterial protein toxins that modify host regulatory GTPases. Nature Reviews Microbiology, 2011. 9(7): p. 487-498. [DOI:10.1038/nrmicro2592] [PMID]
8. Collier, R., Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon, 2001. 39(11): p. 1793-1803. [DOI:10.1016/S0041-0101(01)00165-9] [PMID]
9. Montecucco, C. and G. Schiavo, Mechanism of action of tetanus and botulinum neurotoxins. Molecular microbiology, 1994. 13(1): p. 1-8. [DOI:10.1111/j.1365-2958.1994.tb00396.x] [PMID]
10. Obrig, T.G., Escherichia coli Shiga toxin mechanisms of action in renal disease. Toxins, 2010. 2(12): p. 2769-2794. [DOI:10.3390/toxins2122769] [PMID] []
11. Martın, M., et al., Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. International Journal of Food Microbiology, 2004. 94(3): p. 279-286. [DOI:10.1016/j.ijfoodmicro.2004.01.011] [PMID]
12. Dubreuil, J.D., The whole Shebang: the gastrointestinal tract, Escherichia coli enterotoxins and secretion. Current issues in molecular biology, 2012. 14(2): p. 71-82.
13. Masuyer, G., et al., Engineered botulinum neurotoxins as new therapeutics. Annual review of pharmacology and toxicology, 2014. 54: p. 27-51. [DOI:10.1146/annurev-pharmtox-011613-135935] [PMID]
14. Hughes, C., P. Stanley, and V. Koronakis, E. coli hemolysin interactions with prokaryotic and eukaryotic cell membranes. Bioessays, 1992. 14(8): p. 519-525. [DOI:10.1002/bies.950140804] [PMID]
15. Edae, M. and E.K. Wabalo, Bacterial toxins and their modes of action: a review article. J Med Physiol Biophys, 2019. 55.
16. Böhnel, H. and F. Gessler, Botulinum toxins-cause of botulism and systemic diseases? Veterinary research communications, 2005. 29: p. 313-345. [DOI:10.1023/B:VERC.0000048489.45634.32] [PMID]
17. Los, F.C., et al., Role of pore-forming toxins in bacterial infectious diseases. Microbiology and Molecular Biology Reviews, 2013. 77(2): p. 173-207. [DOI:10.1128/MMBR.00052-12] [PMID] []
18. Tamura, B.M. and B. Chang, Botulinum toxin: application into acupuncture points for migraine. Dermatologic surgery, 2003. 29(7): p. 749-754. https://doi.org/10.1046/j.1524-4725.2003.29183.x [DOI:10.1097/00042728-200307000-00014] [PMID]
19. Takeda, T., et al., Epitope mapping and characterization of antigenic determinants of heat-stable enterotoxin (STh) of enterotoxigenic Escherichia coli by using monoclonal antibodies. Infection and immunity, 1993. 61(1): p. 289-294. [DOI:10.1128/iai.61.1.289-294.1993] [PMID] []
20. Piontek, A., et al., Targeting claudin‐overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin. Molecular Oncology, 2020. 14(2): p. 261-276. [DOI:10.1002/1878-0261.12615] [PMID] []
21. Xu, J., et al., Identification and synthesis of an efficient multivalent E. coli heat labile toxin inhibitor _ A dynamic combinatorial chemistry approach. Bioorganic & Medicinal Chemistry, 2020. 28(9): p. 115436. [DOI:10.1016/j.bmc.2020.115436] [PMID]
22. Mahanti, A., et al., Characterization of methicillin-resistant and enterotoxins producing Staphylococcus aureus in bovine milk in India. Journal of Agriculture and Food Research, 2020. 2: p. 100017. [DOI:10.1016/j.jafr.2019.100017]
23. Larpin, Y., et al., Bacterial pore‐forming toxin pneumolysin: Cell membrane structure and microvesicle shedding capacity determines differential survival of immune cell types. The FASEB Journal, 2020. 34(1): p. 1665-1678. [DOI:10.1096/fj.201901737RR] [PMID]
24. Giesbrecht, K., et al., Streptococcal pyrogenic exotoxin A-stimulated monocytes mediate regulatory T-cell accumulation through PD-L1 and kynurenine. International Journal of Molecular Sciences, 2019. 20(16): p. 3933. [DOI:10.3390/ijms20163933] [PMID] []
25. Parrish, K.L., et al., Carriage of the toxic shock syndrome toxin gene by contemporary community-associated Staphylococcus aureus isolates. Journal of the Pediatric Infectious Diseases Society, 2019. 8(5): p. 470-473. [DOI:10.1093/jpids/piy098] [PMID] []
26. Wang, H., et al., Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity. Toxins, 2019. 11(1): p. 24. [DOI:10.3390/toxins11010024] [PMID] []
27. Xu, S.X., et al., Superantigens modulate bacterial density during Staphylococcus aureus nasal colonization. Toxins, 2015. 7(5): p. 1821-1836. [DOI:10.3390/toxins7051821] [PMID] []
28. Sampedro, G.R., et al., Targeting Staphylococcus aureus α-toxin as a novel approach to reduce severity of recurrent skin and soft-tissue infections. The Journal of infectious diseases, 2014. 210(7): p. 1012-1018. [DOI:10.1093/infdis/jiu223] [PMID] []
29. Cleret-Buhot, A., et al., Both lethal and edema toxins of Bacillus anthracis disrupt the human dendritic cell chemokine network. 2012. [DOI:10.1371/journal.pone.0043266] [PMID] []
30. Carter, G.P., J.I. Rood, and D. Lyras, The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends in microbiology, 2012. 20(1): p. 21-29. [DOI:10.1016/j.tim.2011.11.003] [PMID]
31. Bharati, K. and N.K. Ganguly, Cholera toxin: a paradigm of a multifunctional protein. The Indian journal of medical research, 2011. 133(2): p. 179.
32. Mestre, M.B., et al., α-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus infected cells. Autophagy, 2010. 6(1): p. 110-125. [DOI:10.4161/auto.6.1.10698] [PMID]
33. Bukowski, M., B. Wladyka, and G. Dubin, Exfoliative toxins of Staphylococcus aureus. Toxins, 2010. 2(5): p. 1148-1165. [DOI:10.3390/toxins2051148] [PMID] []
34. Carbonetti, N.H., Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future microbiology, 2010. 5(3): p. 455-469. [DOI:10.2217/fmb.09.133] [PMID] []
35. Genth, H., et al., Clostridium difficile toxins: more than mere inhibitors of Rho proteins. The international journal of biochemistry & cell biology, 2008. 40(4): p. 592-597. [DOI:10.1016/j.biocel.2007.12.014] [PMID]
36. Vojtova, J., J. Kamanova, and P. Sebo, Bordetella adenylate cyclase toxin: a swift saboteur of host defense. Current opinion in microbiology, 2006. 9(1): p. 69-75. [DOI:10.1016/j.mib.2005.12.011] [PMID]
37. Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clinical microbiology reviews, 2005. 18(2): p. 247-263. [DOI:10.1128/CMR.18.2.247-263.2005] [PMID] []
38. Alileche, A., et al., Anthrax lethal toxin-mediated killing of human and murine dendritic cells impairs the adaptive immune response. PLoS pathogens, 2005. 1(2): p. e19. [DOI:10.1371/journal.ppat.0010019] [PMID] []
39. Bhatnagar, R. and S. Batra, Anthrax toxin. Critical reviews in microbiology, 2001. 27(3): p. 167-200. [DOI:10.1080/20014091096738] [PMID]
40. Spaulding, A.R., et al., Staphylococcal and streptococcal superantigen exotoxins. Clinical microbiology reviews, 2013. 26(3): p. 422-447. [DOI:10.1128/CMR.00104-12] [PMID] []
41. Watson, A.R. and W.T. Lee, Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cellular immunology, 2006. 242(2): p. 80-90. [DOI:10.1016/j.cellimm.2006.09.008] [PMID] []
42. Breuer, K., A. Kapp, and T. Werfel, Bacterial infections and atopic dermatitis. Allergy, 2001. 56(11): p. 1034-1041. [DOI:10.1034/j.1398-9995.2001.00146.x] [PMID]
43. Pinchuk, I.V., E.J. Beswick, and V.E. Reyes, Staphylococcal enterotoxins. Toxins, 2010. 2(8): p. 2177-2197. [DOI:10.3390/toxins2082177] [PMID] []
44. Alouf, J.E., Bacterial protein toxins: an overview. Bacterial toxins: Methods and protocols, 2000: p. 1-26. [DOI:10.1385/1-59259-052-7:1] [PMID]
45. Donnelly, J.J. and R. Rappuoli, Blocking bacterial enterotoxins. Nature Medicine, 2000. 6(3): p. 257-258. [DOI:10.1038/73095] [PMID]
46. Sesardic, T., Bioassays for evaluation of medical products derived from bacterial toxins. Current opinion in microbiology, 2012. 15(3): p. 310-316. [DOI:10.1016/j.mib.2012.05.008] [PMID]
47. Donaldson, D.S. and N.A. Williams, Bacterial toxins as immunomodulators. Pathogen-Derived Immunomodulatory Molecules, 2009: p. 1-18. [DOI:10.1007/978-1-4419-1601-3_1] [PMID]
48. Alouf, J.E., D. Ladant, and M.R. Popoff, The comprehensive sourcebook of bacterial protein toxins. 2005: Elsevier.
49. Mathieu, J., Interactions between autophagy and bacterial toxins: targets for therapy? Toxins, 2015. 7(8): p. 2918-2958. [DOI:10.3390/toxins7082918] [PMID] []
50. Holst, O., Bacterial toxins: methods and protocols. Vol. 145. 2008: Springer Science & Business Media.
51. Feld, G.K., M.J. Brown, and B.A. Krantz, Ratcheting up protein translocation with anthrax toxin. Protein Science, 2012. 21(5): p. 606-624. [DOI:10.1002/pro.2052] [PMID] []
52. Weldon, J.E. and I. Pastan, A guide to taming a toxin-recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. The FEBS journal, 2011. 278(23): p. 4683-4700. [DOI:10.1111/j.1742-4658.2011.08182.x] [PMID] []
53. Liu, S., M. Moayeri, and S.H. Leppla, Anthrax lethal and edema toxins in anthrax pathogenesis. Trends in microbiology, 2014. 22(6): p. 317-325. [DOI:10.1016/j.tim.2014.02.012] [PMID] []
54. Abrami, L., et al., Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. The Journal of cell biology, 2003. 160(3): p. 321-328. [DOI:10.1083/jcb.200211018] [PMID] []
55. Lin, J.E., et al., Bacterial heat-stable enterotoxins: translation of pathogenic peptides into novel targeted diagnostics and therapeutics. Toxins, 2010. 2(8): p. 2028-2054. [DOI:10.3390/toxins2082028] [PMID] []
56. Kamanova, J., et al., Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. The journal of immunology, 2008. 181(8): p. 5587-5597. [DOI:10.4049/jimmunol.181.8.5587] [PMID]
57. von Scheidt, B., et al., Enterotoxins can support CAR T cells against solid tumors. Proceedings of the National Academy of Sciences, 2019. 116(50): p. 25229-25235. [DOI:10.1073/pnas.1904618116] [PMID] []
58. Komiażyk, M., et al., Bacterial type AB₅ enterotoxins--structure, function and mechanism of action. Postepy biochemii, 2015. 61(4): p. 430-435.
59. Ogasawara, F., et al., Changes in the asymmetric distribution of cholesterol in the plasma membrane influence streptolysin O pore formation. Scientific reports, 2019. 9(1): p. 4548. [DOI:10.1038/s41598-019-39973-x] [PMID] []
60. Spaan, A.N., J.A. van Strijp, and V.J. Torres, Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nature Reviews Microbiology, 2017. 15(7): p. 435-447. [DOI:10.1038/nrmicro.2017.27] [PMID] []
61. Verherstraeten, S., et al., Perfringolysin O: the underrated Clostridium perfringens toxin? Toxins, 2015. 7(5): p. 1702-1721. [DOI:10.3390/toxins7051702] [PMID] []
62. Hernández-Flores, K. and H. Vivanco-Cid, Biological effects of listeriolysin O: implications for vaccination. BioMed research international, 2015. 2015. [DOI:10.1155/2015/360741] [PMID] []
63. Dramsi, S. and P. Cossart, Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. The Journal of cell biology, 2002. 156(6): p. 943-946. [DOI:10.1083/jcb.200202121] [PMID] []
64. Caiazza, N.C. and G.A. O'Toole, Alpha-toxin is required for biofilm formation by Staphylococcus aureus. Journal of bacteriology, 2003. 185(10): p. 3214-3217. [DOI:10.1128/JB.185.10.3214-3217.2003] [PMID] []
65. Ivarsson, M.E., J.C. Leroux, and B. Castagner, Targeting bacterial toxins. Angewandte Chemie International Edition, 2012. 51(17): p. 4024-4045. [DOI:10.1002/anie.201104384] [PMID]
66. Weerakkody, L.R. and C. Witharana, The role of bacterial toxins and spores in cancer therapy. Life sciences, 2019. 235: p. 116839. [DOI:10.1016/j.lfs.2019.116839] [PMID]
67. Lebrun, I., et al., Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini reviews in medicinal chemistry, 2009. 9(7): p. 820-828. [DOI:10.2174/138955709788452603] [PMID]
68. Lucas, F., M. Popoff, and G. Corthier, Bacterial enterotoxins: structure, mode of action. Annales de Recherches veterinaires. Annals of Veterinary Research, 1991. 22(2): p. 147-162.
69. Van Melderen, L. and M. Saavedra De Bast, Bacterial toxin-antitoxin systems: more than selfish entities? PLoS genetics, 2009. 5(3): p. e1000437. [DOI:10.1371/journal.pgen.1000437] [PMID] []
70. Doxey, A.C., M.J. Mansfield, and C. Montecucco, Discovery of novel bacterial toxins by genomics and computational biology. Toxicon, 2018. 147: p. 2-12. [DOI:10.1016/j.toxicon.2018.02.002] [PMID]
71. Lucas, R., et al., Impact of bacterial toxins in the lungs. Toxins, 2020. 12(4): p. 223. [DOI:10.3390/toxins12040223] [PMID] []
72. Eby, J.C., et al., Review of the neutrophil response to Bordetella pertussis infection. FEMS Pathogens and Disease, 2015. 73(9): p. ftv081. [DOI:10.1093/femspd/ftv081] [PMID] []
73. Zhang, S. and G.C. Stewart, Staphylococcal enterotoxins, in Staphylococcus aureus Infection and Disease. 2001, Springer. p. 117-136. [DOI:10.1007/0-306-46848-4_7]
74. Rousset, E. and J. Dubreuil, Bacterial enterotoxin receptors. Veterinary Research, 2000. 31(4): p. 413-435. [DOI:10.1051/vetres:2000129] [PMID]
75. Jurėnas, D., et al., Biology and evolution of bacterial toxin-antitoxin systems. Nature Reviews Microbiology, 2022. 20(6): p. 335-350. [DOI:10.1038/s41579-021-00661-1] [PMID]
76. Choe, S., et al., & Eisenberg, D.(1992). The crystal structure of diphtheria toxin. Nature. 357: p. 216-222. [DOI:10.1038/357216a0] [PMID]
77. Thorpe, P., et al., Toxicity of diphtheria toxin for lymphoblastoid cells is increased by conjugation to antilymphocytic globulin. Nature, 1978. 271(5647): p. 752-755. [DOI:10.1038/271752a0] [PMID]
78. Schiavo, G. and F.G. van der Goot, The bacterial toxin toolkit. Nature Reviews Molecular Cell Biology, 2001. 2(7): p. 530-537. [DOI:10.1038/35080089] [PMID]
79. Heggelund, J.E., et al., Towards new cholera prophylactics and treatment: Crystal structures of bacterial enterotoxins in complex with GM1 mimics. Scientific Reports, 2017. 7(1): p. 2326. [DOI:10.1038/s41598-017-02179-0] [PMID] []
80. Molejon, N.A., et al., Selection of G-rich ssDNA aptamers for the detection of enterotoxins of the cholera toxin family. Analytical Biochemistry, 2023. 669: p. 115118. [DOI:10.1016/j.ab.2023.115118] [PMID]
81. Zahaf, N.-I. and G. Schmidt, Bacterial toxins for cancer therapy. Toxins, 2017. 9(8): p. 236. [DOI:10.3390/toxins9080236] [PMID] []
82. Lax, A.J., Bacterial toxins and cancer-a case to answer? Nature Reviews Microbiology, 2005. 3(4): p. 343-349. [DOI:10.1038/nrmicro1130] [PMID]
83. Rosadi, F., C. Fiorentini, and A. Fabbri, Bacterial protein toxins in human cancers. FEMS Pathogens and Disease, 2016. 74(1): p. ftv105. [DOI:10.1093/femspd/ftv105] [PMID]
84. Lahiri, S., Bacterial toxins--an overview. Journal of Natural Toxins, 2000. 9(4): p. 381-408.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.