Volume 11, Issue 1 (2025)                   IEM 2025, 11(1): 1-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vaez H, Vaez V. Comprehensive Analysis of Four Major Surface Proteins for Vaccine Design against Klebsiella pneumoniae. IEM 2025; 11 (1) :1-12
URL: http://iem.modares.ac.ir/article-4-74754-en.html
1- Department of Microbiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran , h_vaez@zbmu.ac.ir
2- Department of Veterinary Science, Gisha office, Tehran, Iran
Abstract:   (374 Views)
Background: Klebsiella pneumoniae (K. pneumoniae) is responsible for life-threatening infections, given that it is usually resistant to antibacterial drugs. Due to the restricted antibiotic options for the treatment of resistant K. pneumoniae infections and the critical role of humoral immune responses in preventing infectious diseases, the present in silico study aimed to investigate fimbriae (type 1 and type 3), outer membrane protein A (OmpA), and outer membrane protein K35 (OmpK35) to find appropriate epitopes for vaccine development.
Materials & Methods: Several independent bioinformatics servers including IEDB, ABCpred, VaxiJen, and EMBOSS were applied to identify appropriate linear epitopes (B-cell and T-cell).  Conformational epitopes were also predicted using Ellipro and Discotope programs. The Antigenic Peptide Prediction server was used to confirm the identified epitopes. Molecular characteristics, toxicity, human similarity, and allergenicity were investigated.
Findings: The results demonstrated that the investigated proteins were highly immunogenic. In the first step, 25 epitopes were identified in the investigated proteins. After applying different exclusion criteria, the final epitope of each investigated protein was selected. The final epitopes of fimbriae (type 1 and type 3), OmpK35 and OmpA were located in 28-49, 26-53, 271-291, and 288-299 regions, respectively. Allergenicity, toxicity, and human similarity were negative for the predicted epitopes.
Conclusion: The present study results introduced four reliable B-cell and T-cell epitopes (each for one investigated protein) with appropriate physicochemical characteristics. The proposed epitopes could be used in vaccine development against K. pneumoniae after further in vitro and in vivo studies.
Full-Text [PDF 657 kb]   (78 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2024/04/19 | Accepted: 2024/12/21 | Published: 2025/02/22

References
1. Effah CY, Sun T, Liu S, Wu Y. Klebsiella pneumoniae: An increasing threat to public health. Ann Clin Microbiol Antimicrob. 2020;19(1):1-9. [DOI:10.1186/s12941-019-0343-8] [PMID] []
2. Wang G, Zhao G, Chao X, Xie L, Wang H. The characteristic of virulence, biofilm, and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health. 2020;17(17):6278. [DOI:10.3390/ijerph17176278] [PMID] []
3. Delarampour A, Ghalehnoo ZR, Khademi F, Vaez H. Antibiotic resistance patterns and prevalence of class I, II, and III integrons among clinical isolates of Klebsiella pneumoniae. Infez Med. 2020;28(1):64-9.
4. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev. 2019;32(3):10-128. [DOI:10.1128/CMR.00001-19] [PMID] []
5. Assoni L, Girardello R, Converso TR, Darrieux M. Current stage in the development of Klebsiella pneumoniae vaccines. Infect Dis Ther. 2021;10(4):2157-75. [DOI:10.1007/s40121-021-00533-4] [PMID] []
6. Opoku-Temeng C, Kobayashi SD, DeLeo FR. Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J. 2019;17:1360-6 [DOI:10.1016/j.csbj.2019.09.011] [PMID] []
7. Hoi M, Tennant SM, Simon R, Cross AS. Progress towards the development of Klebsiella vaccines. Expert Rev Vaccines. 2019;18(7):681-91. [DOI:10.1080/14760584.2019.1635460] [PMID] []
8. Zhang BZ, Hu D, Dou Y, Xiong L, Wang X, Hu J, et al. Identification and evaluation of recombinant outer membrane proteins as vaccine candidates against Klebsiella pneumoniae. Front Immunol. 2021;12:730116. [DOI:10.3389/fimmu.2021.730116] [PMID] []
9. Lundberg U, Senn BM, Schuler W, Meinke A, Hanner M. Identification and characterization of antigens as vaccine candidates against Klebsiella pneumoniae. Hum Vaccin Immunother. 2013;9(3):497-505. [DOI:10.4161/hv.23225] [PMID] []
10. Witkowska D, Mieszała M, Gamian A. Major structural proteins of type 1 and type 3 Klebsiella fimbriae are effective protein carriers and immunogens in conjugates as revealed from their immunochemical characterization. FEMS Immunol Med Microbiol. 2005;45(2):221-30. [DOI:10.1016/j.femsim.2005.04.005] [PMID]
11. Llobet E, March C, Giménez P, Bengoechea JA. Klebsiella pneumoniae OmpA confers resistance to antimicrobial peptides. Antimicrobial agents and chemotherapy. 2009;53(1):298-302. [DOI:10.1128/AAC.00657-08] [PMID] []
12. Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y. Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discov Today. 2020;25(6):1034-42. [DOI:10.1016/j.drudis.2020.03.006] [PMID]
13. Hajissa K, Zakaria R, Suppian R, Mohamed Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection: A mini-review. J Adv Vet Anim Res. 2019;6(2):174-82. [DOI:10.5455/javar.2019.f329] [PMID] []
14. Garnier J. GOR secondary structure prediction method version IV. Meth Enzym RF Doolittle Ed. 1998;266:540-53. [DOI:10.1016/S0076-6879(96)66034-0] [PMID]
15. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. Totowa, NJ: Humana press; 2005. [DOI:10.1385/1-59259-890-0:571]
16. Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens, and subunit vaccines. BMC Bioinformatics. 2007;8:1-7. [DOI:10.1186/1471-2105-8-4] [PMID] []
17. Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:1-7. https://doi.org/10.1186/1745-7580-2-2 [DOI:10.1186/1745-7580-2-1] [PMID] []
18. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1979;47:45-148. [DOI:10.1002/9780470122921.ch2] [PMID]
19. Karplus PA, Schulz GE. Prediction of chain flexibility in proteins: A tool for the selection of peptide antigens. Naturwissenschaften. 1985;72(4):212-3. [DOI:10.1007/BF01195768]
20. Emini EA, Hughes JV, Perlow D, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985;55(3):836-9. [DOI:10.1128/jvi.55.3.836-839.1985] [PMID] []
21. Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990;276(1-2):172-4. [DOI:10.1016/0014-5793(90)80535-Q] [PMID]
22. Parker JM, Guo D, Hodges RS. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986;25(19):5425-32. [DOI:10.1021/bi00367a013] [PMID]
23. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24-9. [DOI:10.1093/nar/gkx346] [PMID] []
24. Galanis KA, Nastou KC, Papandreou NC, Petichakis GN, Pigis DG, Iconomidou VA. Linear B-cell epitope prediction for in silico vaccine design: A performance review of methods available via command-line interface. Int J Mol Sci. 2021;22(6):3210. [DOI:10.3390/ijms22063210] [PMID] []
25. Saha S, Raghava GP. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins Struct Funct Bioinf. 2006;65(1):40-8. [DOI:10.1002/prot.21078] [PMID]
26. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1:W296-303. [DOI:10.1093/nar/gky427] [PMID] []
27. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all‐atom structure validation. Prot Sci. 2018;27(1):293-315. [DOI:10.1002/pro.3330] [PMID] []
28. Haste Andersen P, Nielsen M, Lund OL. Prediction of residues in discontinuous B‐cell epitopes using protein 3D structures. Prot Sci. 2006;15(11):2558-67. [DOI:10.1110/ps.062405906] [PMID] []
29. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9:1-8. [DOI:10.1186/1471-2105-9-514] [PMID] []
30. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, et al. In silico approach for predicting toxicity of peptides and proteins. PloS One. 2013;8(9):e73957. [DOI:10.1371/journal.pone.0073957] [PMID] []
31. Nguyen MN, Krutz NL, Limviphuvadh V, Lopata AL, Gerberick GF, Maurer-Stroh S. AllerCatPro 2.0: A web server for predicting protein allergenicity potential. Nucleic Acids Res. 2022;50(W1):W36-43. [DOI:10.1093/nar/gkac446] [PMID] []
32. Walker JM, editor. The proteomics protocols handbook. Humana press; 2005. [DOI:10.1385/1592598900]
33. Rey J, Murail S, de Vries S, Derreumaux P, Tuffery P. PEP-FOLD4: A pH-dependent force field for peptide structure prediction in aqueous solution. Nucleic Acids Res. 2023;51(W1):W432-7. [DOI:10.1093/nar/gkad376] [PMID] []
34. Saman S, Chauhan I, Srivastava N. Vaccines: An important tool for infectious disease. Recent Adv Antiinfect Drug Discov. 2023;18(2):88-109. [DOI:10.2174/2772434418666221114113036] [PMID]
35. Zhu J, Wang T, Chen L, Du H. Virulence factors in hypervirulent Klebsiella pneumoniae. Front Microbiol. 2021;12:642484. [DOI:10.3389/fmicb.2021.642484] [PMID] []
36. Ranjbarian P, Goudarzi F, Akya A, Heidarinia H, Farasat A, Rostamian M. Finding epitopes of Klebsiella pneumoniae outer membrane protein-K17 (OMPK17) and introducing a 25-mer peptide of it as a vaccine candidate. Biologia. 2023;78(8):2261-71. [DOI:10.1007/s11756-023-01371-0] [PMID] []
37. Zargaran FN, Akya A, Rezaeian S, Ghadiri K, Lorestani RC, Madanchi H, et al. B cell epitopes of four fimbriae antigens of Klebsiella pneumoniae: A comprehensive in silico study for vaccine development. Int J Pept Res Ther. 2021;27:875-86. [DOI:10.1007/s10989-020-10134-3] [PMID] []
38. Douradinha B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res. 2024;287:127837. [DOI:10.1016/j.micres.2024.127837] [PMID]
39. Chauhan R, Bhattacharya J, Solanki R, Ahmad FJ, Alankar B, Kaur H. GUD-VE visualization tool for physicochemical properties of proteins. MethodsX. 2023;10:102226. [DOI:10.1016/j.mex.2023.102226] [PMID] []
40. Novák P, Havlíček V. Protein extraction and precipitation. In: Ciborowski P, Silberring J, editors. Proteomic profiling and analytical chemistry: The crossroads. Elsevier; 2016. [DOI:10.1016/B978-0-444-63688-1.00004-5] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.