Volume 10, Issue 4 (2024)                   IEM 2024, 10(4): 277-285 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ferdosi-Shahandashti A, Ferdosi-Shahandashti E, Zaboli F, Pournajaf A. Phenotypic and Genotypic Detection of Biofilm Formation of Klebsiella Pneumoniae Clinical Isolates. IEM 2024; 10 (4) :277-285
URL: http://iem.modares.ac.ir/article-4-75762-en.html
1- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2- Biomedical and Microbial Advanced Technologies Research Center (BMAT), Health Research Institute, Babol University of Medical Sciences, Babol, Iran , e.ferdosi@mubabol.ac.ir
3- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
Abstract:   (733 Views)
Background: This study aimed to investigate the biofilm formation ability of K. pneumoniae clinical isolates using phenotypic and genotypic methods. Additionally, the association of biofilm formation with antibiotic resistance and the presence of biofilm-related genes was investigated.
Materials & Methods: In this research, a total of 52 clinical isolates of K. pneumoniae were collected from educational hospitals affiliated with Babol University of Medical Sciences from March to October 2023. K. pneumoniae isolates were identified through standard microbiological and biochemical tests. Disk diffusion, microtiter plate, and polymerase chain reaction assays were also performed to evaluate the biofilm formation ability of these isolates.
Findings: K. pneumoniae isolates were obtained from various clinical specimens. The isolates showed the highest resistance to ceftazidime (54%) and the lowest resistance to amikacin (17%). More than 48% of the isolates were multidrug resistant. Of the 52 K. pneumoniae isolates, 43 (82.69%) isolates produced biofilm, whereas the remaining nine (17.3%) did not. K. pneumoniae isolates harbored biofilm formation genes, including treC (78.84%), wcaG (71.15%), mrkD (65.38%), mrkA (63.46%), iutA (40.38%), and magA (15.38%).
Conclusion: This study demonstrates that K. pneumoniae isolates are highly pathogenic because of antibiotic resistance and carrying biofilm genes. Given the biofilm formation propensity of these strains, it is imperative to elucidate the underlying mechanisms of biofilm formation in K. pneumoniae. Developing strategies to inhibit this process is paramount in the effective management of infections caused by this pathogen.
Full-Text [PDF 485 kb]   (188 Downloads)    
Article Type: Original Research | Subject: Bacteriology
Received: 2024/06/22 | Accepted: 2024/08/26 | Published: 2024/12/20

References
1. Huq MA, Akter S. Biosynthesis, characterization, and antibacterial application of novel silver nanoparticles against drug resistant pathogenic Klebsiella pneumoniae and Salmonella enteritidis. Molecules. 2021;26(19):5996. [DOI:10.3390/molecules26195996] [PMID] []
2. Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL, Thomson NR, et al. Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin Infect Dis. 2018;67(2):161-70. [DOI:10.1093/cid/ciy027] [PMID] []
3. Ashurst JV, Dawson A. Klebsiella pneumonia. Treasure Island (FL): StatPearls Publishing; 2018.
4. Aghaei SS, Keikha M, Zarandi MK, Rahdar HA, Javadi A, Takei E, et al. Evaluation and identification of carbapenem resistant Klebsiella pneumoniae isolated from hospitalized patients in Qom city (Iran). Qom Univ Med Sci J. 2019;13(4):39-47. [DOI:10.29252/qums.13.4.39]
5. Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, et al. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019:13(Suppl 11):1-8. [DOI:10.1186/s12919-019-0176-7] [PMID] []
6. Bandeira M, Almeida Carvalho P, Duarte A, Jordao L. Exploring dangerous connections between Klebsiella pneumoniae biofilms and healthcare-associated infections. Pathogens. 2014;3(3):720-31. [DOI:10.3390/pathogens3030720] [PMID] []
7. Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Triplicane Dwarakanathan H, Murugan D, Umashankar Y, Monk PN, et al. The influence of biofilms on carbapenem susceptibility and patient outcome in device associated K. pneumoniae infections: Insights into phenotype vs genome-wide analysis and correlation. Front Microbiol. 2020;11:591679. [DOI:10.3389/fmicb.2020.591679] [PMID] []
8. Ochońska D, Ścibik Ł, Brzychczy-Włoch M. Biofilm formation of clinical Klebsiella pneumoniae strains isolated from tracheostomy tubes and their association with antimicrobial resistance, virulence, and genetic diversity. Pathogens. 2021;10(10):1345. [DOI:10.3390/pathogens10101345] [PMID] []
9. Li Y, Kumar S, Zhang L. Mechanisms of antibiotic resistance and developments in therapeutic strategies to combat Klebsiella pneumoniae infection. Infect Drug Resist. 2024;17:1107-19. [DOI:10.2147/IDR.S453025] [PMID] []
10. Joseph BJ, Mathew M, Rachel R, Mathew J, Radhakrishnan E. Klebsiella pneumoniae virulence factors and biofilm components: Synthesis, structure, function, and inhibitors. In: ESKAPE pathogens: Detection, mechanisms, and treatment strategies. Singapore: Springer Nature Singapore; 2024, p. 271-295. [DOI:10.1007/978-981-99-8799-3_9]
11. Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol. 2023;14:1238482. [DOI:10.3389/fmicb.2023.1238482] [PMID] []
12. Weissfeld AS, Sahm DF, Forbes BA. Bailey & Scott's diagnostic microbiology. Mosby-Year Book; 1998.
13. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests.33th ed. Wayne, PA: Clinical Laboratory Standards Institute; 2023.
14. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske CG, et al. Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
15. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
16. Yu S, Jiang B, Jia C, Wu H, Shen J, Hu X, et al. Investigation of biofilm production and its association with genetic and phenotypic characteristics of OM (osteomyelitis) and non-OM orthopedic Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2020;19:1-9. [DOI:10.1186/s12941-020-00352-4] [PMID] []
17. Al-Kraety IA, Alquraishi ZH, Alsadawi AA. Molecular study of fimh gene in Klebisella pneumoniae isolated from urinary catheter patients. Indian J Forensic Med Toxicol. 2020;14(2):400-4.
18. Hou XH, Song XY, Ma XB, Zhang SY, Zhang JQ. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates. Braz J Microbiol. 2015;46(3):759-68. [DOI:10.1590/S1517-838246320140138] [PMID] []
19. Farhadi M, Ahanjan M, Goli HR, Haghshenas MR, Gholami M. High frequency of multidrug-resistant (MDR) Klebsiella pneumoniae harboring several β-lactamase and integron genes collected from several hospitals in the north of Iran. Ann Clin Microbiol Antimicrob. 2021;20:1-9. [DOI:10.1186/s12941-021-00476-1] [PMID] []
20. Kot B, Piechota M, Szweda P, Mitrus J, Wicha J, Grużewska A, et al. Virulence analysis and antibiotic resistance of Klebsiella pneumoniae isolates from hospitalised patients in Poland. Sci Rep. 2023;13(1):4448. [DOI:10.1038/s41598-023-31086-w] [PMID] []
21. Heidary M, Nasiri MJ, Dabiri H, Tarashi S. Prevalence of drug-resistant Klebsiella pneumoniae in Iran: A review article. Iran J Public Health. 2018;47(3):317-26.
22. Alcántar-Curiel MD, Ledezma-Escalante CA, Jarillo-Quijada MD, Gayosso-Vázquez C, Morfín-Otero R, Rodríguez-Noriega E, et al. Association of antibiotic resistance, cell adherence, and biofilm production with the endemicity of nosocomial Klebsiella pneumoniae. Biomed Res Int. 2018;2018(1):7012958. [DOI:10.1155/2018/7012958] [PMID] []
23. Cepas V, López Y, Muñoz E, Rolo D, Ardanuy C, Martí S, et al. Relationship between biofilm formation and antimicrobial resistance in Gram-negative bacteria. Microb Drug Resist. 2019;25(1):72-9. [DOI:10.1089/mdr.2018.0027] [PMID]
24. Yadav B, Mohanty S, Behera B. Occurrence and genomic characteristics of hypervirulent Klebsiella pneumoniae in a tertiary care hospital, eastern India. Infect Drug Resist. 2023;16:2191-201. [DOI:10.2147/IDR.S405816] [PMID] []
25. Goudarzi G, Shakib P, Karami S, Najafi-Olya Z. The prevalence of virulence factors among ESBLs-producing Klebsiella pneumoniae isolated from Khorramabad hospitals, Iran. Clin Lab. 2023;69(10):2127. [DOI:10.7754/Clin.Lab.2023.230322] [PMID]
26. Anis RH, Ahmed SM, Esmaeel NE. Virulence determinants associated with biofilm formation by Klebsiella pneumoniae causing hospital-acquired bloodstream infection. Microbes Infect Dis. 2021;2(2):317-25. [DOI:10.21608/mid.2021.62223.1117]
27. Kelishomi FZ, Amereh S, Ghayyaz F, Javadi A, Anari RK, Nikkhahi F. Frequency of virulence genes and their association with biofilm formation ability in Klebsiella pneumoniae isolated from wound infections. 2022:1-14. [DOI:10.21203/rs.3.rs-1874323/v1] []
28. Ghonaim M, Ali S, El-Gendy F, Khamis N, Ajlan S. Detection of virulence genes (magA and rmpA) and resistance gene (CTX-M) in Klebsiella pneumoniae isolated from neonates with septicemia. Microbes Infect Dis. 2021;2(4):767-80. [DOI:10.21608/mid.2021.85894.1170]
29. Ali AM, Sana'a N. Virulence factors genotyping of Klebsiella pneumoniae clinical isolates from Baghdad. Rev Res Med Microbiol. 2019;30(1):36-46. [DOI:10.1097/MRM.0000000000000151]
30. Mahrous SH, El-Balkemy FA, Abo-Zeid NZ, El-Mekkawy MF, El Damaty HM, Elsohaby I. Antibacterial and anti-biofilm activities of cinnamon oil against multidrug-resistant Klebsiella pneumoniae isolated from pneumonic sheep and goats. Pathogens. 2023;12(9):1138. [DOI:10.3390/pathogens12091138] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.