1. Sabzi S, Shahbazi S, Noori Goodarzi N, Haririzadeh Jouriani F, Habibi M, Bolourchi N, et al. Genome-wide subtraction analysis and reverse vaccinology to detect novel drug targets and potential vaccine candidates against ehrlichia chaffeensis. Appl Biochem Biotechnol. 2023;195(1):107-24. [
DOI:10.1007/s12010-022-04116-y] [
PMID] [
]
2. Shahbazi S, Sabzi S, Goodarzi NN, Fereshteh S, Bolourchi N, Mirzaie B, et al. Identification of novel putative immunogenic targets and construction of a multi-epitope vaccine against multidrug-resistant Corynebacterium jeikeium using reverse vaccinology approach. Microb Pathog. 2022;164:105425. [
DOI:10.1016/j.micpath.2022.105425] [
PMID]
3. Shahkolahi S, Shakibnia P, Shahbazi S, Sabzi S, Badmasti F, Asadi Karam MR, et al. Detection of ESBL and AmpC producing Klebsiella pneumoniae ST11 and ST147 from urinary tract infections in Iran. Acta Microbiol Immunol Hung. 2022;69(4):303-13. [
DOI:10.1556/030.2022.01808] [
PMID]
4. Taati Moghadam M, Hossieni Nave H, Mohebi S, Norouzi A. The evaluation of connection between integrons class I and II and ESBL-producing and non-ESBL Klebsiella pneumoniae isolated from clinical samples, Kerman. Iran J Med Microbiol. 2016;10(4):1-9.
5. Lewis K. New approaches to antimicrobial discovery. Biochem Pharmacol. 2017;134:87-98. [
DOI:10.1016/j.bcp.2016.11.002] [
PMID]
6. Rahmati F. Identification and characterization of Lactococcus starter strains in milk-based traditional fermented products in the region of Iran. AIMS Agric Food. 2018;3(1):12-25. [
DOI:10.3934/agrfood.2018.1.12]
7. Magalhães C, Lima M, Trieu-Cuot P, Ferreira P. To give or not to give antibiotics is not the only question. Lancet Infect Dis. 2021;21(7):e191-201. [
DOI:10.1016/S1473-3099(20)30602-2] [
PMID]
8. Shahbazi S, Badmasti F, Habibi M, Sabzi S, Noori Goodarzi N, Farokhi M, et al. In silico and in vivo investigations of the immunoreactivity of Klebsiella pneumoniae OmpA protein as a vaccine candidate. Iran Biomed J. 2024;28(4):156-67. [
DOI:10.61186/ibj.4023] [
PMID] [
]
9. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501. [
DOI:10.3934/microbiol.2018.3.482] [
PMID] [
]
10. Rahmati F. Characterization of Lactobacillus, Bacillus, and Saccharomyces isolated from Iranian traditional dairy products for potential sources of starter cultures. AIMS Microbiol. 2017;3(4):815-25. [
DOI:10.3934/microbiol.2017.4.815] [
PMID] [
]
11. Shahbazi S, Shivaee A, Nasiri M, Mirshekar M, Sabzi S, Sariani OK. Zinc oxide nanoparticles impact the expression of the genes involved in toxin-antitoxin systems in multidrug‐resistant Acinetobacter baumannii. J Basic Microbiol. 2023;63(9):1007-15. [
DOI:10.1002/jobm.202200382] [
PMID]
12. Shivaee A, Meskini M, Shahbazi S, Zargar M. Prevalence of flmA, flmH, mrkA, ecpA, and mrkD virulence genes affecting biofilm formation in clinical isolates of K. pneumonia. Feyz Med Sci J. 2019;23(2):168-76.
13. Moghadam MT, Chegini Z, Khoshbayan A, Farahani I, Shariati A. Helicobacter pylori biofilm and new strategies to combat it. Curr Mol Med. 2021;21(7):549-61. [
DOI:10.2174/1566524020666201203165649] [
PMID]
14. Rahmati F, Hosseini SS, Mahuti Safai S, Asgari Lajayer B, Hatami M. New insights into the role of nanotechnology in microbial food safety. 3 Biotech. 2020;10:1-15. [
DOI:10.1007/s13205-020-02409-9] [
PMID] [
]
15. Ruhal R, Kataria R. Biofilm patterns in Gram-positive and Gram-negative bacteria. Microbiol Res. 2021;251:126829. [
DOI:10.1016/j.micres.2021.126829] [
PMID]
16. Rahmati F. Microencapsulation of Lactobacillus acidophilus and Lactobacillus plantarum in Eudragit S100 and alginate chitosan under gastrointestinal and normal conditions. Appl Nanosci. 2020;10(2):391-9. [
DOI:10.1007/s13204-019-01174-3]
17. Shahbazi S, Habibi M, Badmasti F, Sabzi S, Farokhi M, Karam MR. Design and fabrication of a vaccine candidate based on rOmpA from Klebsiella pneumoniae encapsulated in silk fibroin-sodium alginate nanoparticles against pneumonia infection. Int Immunopharmacol. 2023;125:111171. [
DOI:10.1016/j.intimp.2023.111171] [
PMID]
18. Sabzi S, Habibi M, Badmasti F, Shahbazi S, Karam MR, Farokhi M. Polydopamine-based nano adjuvant as a promising vaccine carrier induces significant immune responses against Acinetobacter baumannii-associated pneumonia. Int J Pharm. 2024;654:123961. [
DOI:10.1016/j.ijpharm.2024.123961] [
PMID]
19. Parvaei M, Habibi M, Shahbazi S, Babaluei M, Farokhi M, Karam MR. Immunostimulatory chimeric protein encapsulated in gelatin nanoparticles elicits protective immunity against Pseudomonas aeruginosa respiratory tract infection. Int J Biol Macromol. 2024;277:133964. [
DOI:10.1016/j.ijbiomac.2024.133964] [
PMID]
20. Rahmati F. Impact of microencapsulation on two probiotic strains in alginate chitosan and Eudragit S100 under gastrointestinal and normal conditions. Open Biotechnol J. 2019;13(1):59-67. [
DOI:10.2174/1874070701913010059]
21. Jayarambabu N, Akshaykranth A, Rao TV, Rao KV, Kumar RR. Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater Lett. 2020;259:126813. [
DOI:10.1016/j.matlet.2019.126813]
22. Wang C, Liu Y, Cui Z, Yu X, Zhang X, Li Y, et al. In situ synthesis of Cu nanoparticles on carbon for highly selective hydrogenation of furfural to furfuryl alcohol by using pomelo peel as the carbon source. ACS Sustain Chem Eng. 2020;8(34):12944-55. [
DOI:10.1021/acssuschemeng.0c03505]
23. Zhou X, Shen B, Zhai J, Hedin N. Reactive oxygenated species generated on iodide‐doped BiVO4/BaTiO3 heterostructures with Ag/Cu nanoparticles by coupled piezophototronic effect and plasmonic excitation. Adv Funct Mater. 2021;31(13):2009594. [
DOI:10.1002/adfm.202009594]
24. Fan X, Yahia LH, Sacher E. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology. 2021;10(2):137. [
DOI:10.3390/biology10020137] [
PMID] [
]
25. Ameen F. Optimization of the synthesis of fungus-mediated bi-metallic Ag-Cu nanoparticles. Appl Sci. 2022;12(3):1384. [
DOI:10.3390/app12031384]
26. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Technol Innov. 2022;26:102336. [
DOI:10.1016/j.eti.2022.102336]
27. Hussain M, Thakur RK, Khazir J, Ahmed S, Khan MI, Rahi P, et al. Traditional uses, phytochemistry, pharmacology, and toxicology of the genus Artemisia L.(Asteraceae): A high-value medicinal plant. Curr Top Med Chem. 2024;24(4):301-42. [
DOI:10.2174/1568026623666230914104141] [
PMID]
28. Sancar PY, Tukur U, Civelek S, Kursat M. The molecular investigations on the subgenus Artemisia Less. of the genus Artemisia L.(Asteraceae) in Turkey. Braz J Biol. 2021;83:e252656. [
DOI:10.1590/1519-6984.252656] [
PMID]
29. Tambun R, Alexander V, Ginting Y. Performance comparison of maceration method, soxhletation method, and microwave-assisted extraction in extracting active compounds from soursop leaves (Annona muricata): A review. IOP Conf Ser Mater Sci Eng. 2021;1122(1):012095 [
DOI:10.1088/1757-899X/1122/1/012095]
30. de Sousa ES, Cortez AC, de Souza Carvalho Melhem M, Frickmann H, de Souza JV. Factors influencing susceptibility testing of antifungal drugs: A critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Braz J Microbiol. 2020;51:1791-800. [
DOI:10.1007/s42770-020-00354-6] [
PMID] [
]
31. Suresh S, Ilakiya R, Kalaiyan G, Thambidurai S, Kannan P, Prabu K, et al. Green synthesis of copper oxide nanostructures using Cynodon dactylon and Cyperus rotundus grass extracts for antibacterial applications. Ceram Int. 2020;46(8):12525-37. [
DOI:10.1016/j.ceramint.2020.02.015]
32. El-Seedi HR, El-Shabasy RM, Khalifa SA, Saeed A, Shah A, Shah R, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019;9(42):24539-59. [
DOI:10.1039/C9RA02225B] [
PMID] [
]
33. Yadav S, Nadar T, Lakkakula J, Wagh NS. Biogenic synthesis of nanomaterials: Bioactive compounds as reducing and capping agents. In: Biogenic nanomaterials for environmental sustainability: Principles, practices, and opportunities. Switzerland, Cham: Springer International Publishing; 2024, p. 147-88. [
DOI:10.1007/978-3-031-45956-6_6] [
]
34. Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques, and applications. J Environ Chem Eng. 2017;5(5):4866-83. [
DOI:10.1016/j.jece.2017.09.026]
35. Gulati S, Sachdeva M, Bhasin K. Capping agents in nanoparticle synthesis: Surfactant and solvent system. AIP Conf Proc. 2018;1953(1):030214. [
DOI:10.1063/1.5032549]
36. El-Rab SM, Basha S, Ashour AA, Enan ET, Alyamani AA, Felemban NH. Green synthesis of copper nano-drug and its dental application upon periodontal disease-causing microorganisms. J Microbiol Biotechnol. 2021;31(12):1656-66. [
DOI:10.4014/jmb.2106.06008] [
PMID] [
]
37. Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical, and green synthesis, classification, characterizations, and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):223-45. [
DOI:10.1080/17518253.2020.1802517]
38. Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, et al. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts. 2021;11(8):902. [
DOI:10.3390/catal11080902]
39. Al-Khafaji MA, Al-Refai'a RA, Al-Zamely OM. Green synthesis of copper nanoparticles using Artemisia plant extract. Mater Today Proc. 2022;49:2831-5. [
DOI:10.1016/j.matpr.2021.10.067]
40. Karimi B, Mardani M, Kaboutari J, Javdani M, Albadi J, Shirian S. Green synthesis of copper nanoparticles using Artemisia annua aqueous extract and its characterization, antioxidant and burn wound healing activities. Chem Pap. 2024;78:231-43. [
DOI:10.1007/s11696-023-03069-8]
41. Hayat K, Ali S, Ullah S, Fu Y, Hussain M. Green synthesized silver and copper nanoparticles induced changes in biomass parameters, secondary metabolites production, and antioxidant activity in callus cultures of Artemisia absinthium L. Green Process Synth. 2021;10(1):61-72. [
DOI:10.1515/gps-2021-0010]
42. Rajeshkumar S, Menon S, Kumar SV, Tambuwala MM, Bakshi HA, Mehta M, et al. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B. 2019;197:111531. [
DOI:10.1016/j.jphotobiol.2019.111531] [
PMID]
43. Saranyaadevi K, Subha V, Ravindran R, Renganathan S. Synthesis and characterization of copper nanoparticle using Capparis zeylanica leaf extract. Int J Chem Tech Res. 2014;6(10):4533-41.
44. Rajesh K, Ajitha B, Reddy YA, Suneetha Y, Reddy PS. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical, and antimicrobial properties. Optik. 2018;154:593-600. [
DOI:10.1016/j.ijleo.2017.10.074]
45. Valdez-Salas B, Beltrán-Partida E, Zlatev R, Stoytcheva M, Gonzalez-Mendoza D, Salvador-Carlos J, et al. Structure-activity relationship of diameter controlled Ag@ Cu nanoparticles in broad-spectrum antibacterial mechanism. Mater Sci Eng C. 2021;119:111501. [
DOI:10.1016/j.msec.2020.111501] [
PMID]
46. Barchiesi D, Gharbi T, Cakir D, Anglaret E, Fréty N, Kessentini S, et al. Performance of surface plasmon resonance sensors using copper/copper oxide films: Influence of thicknesses and optical properties. Photonics. 2022;9(2):104. [
DOI:10.3390/photonics9020104]
47. Amjad R, Mubeen B, Ali SS, Imam SS, Alshehri S, Ghoneim MM, et al. Green synthesis and characterization of copper nanoparticles using Fortunella margarita leaves. Polymers. 2021;13(24):4364. [
DOI:10.3390/polym13244364] [
PMID] [
]
48. Ismail M. Green synthesis and characterizations of copper nanoparticles. Mater Chem Phys. 2020;240:122283. [
DOI:10.1016/j.matchemphys.2019.122283]
49. Ghosh MK, Sahu S, Gupta I, Ghorai TK. Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: Characterization, optical properties, CT-DNA binding, and photocatalytic activity. RSC Adv. 2020;10(37):22027-35. [
DOI:10.1039/D0RA03186K] [
PMID] [
]
50. Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep. 2020;27:e00518. [
DOI:10.1016/j.btre.2020.e00518] [
PMID] [
]
51. Sacoto-Figueroa FK, Bello-Toledo HM, González-Rocha GE, Luengo Machuca L, Lima CA, Meléndrez-Castro M, et al. Molecular characterization and antibacterial activity of oral antibiotics and copper nanoparticles against endodontic pathogens commonly related to health care-associated infections. Clin Oral Investig. 2021;25(12):6729-41. [
DOI:10.1007/s00784-021-03959-9] [
PMID]
52. Ullah H, Wilfred CD, Shaharun MS. Green synthesis of copper nanoparticle using ionic liquid-based extraction from Polygonum minus and their applications. Environ Technol. 2019;40(28):3705-12.. [
DOI:10.1080/09593330.2018.1485751] [
PMID]
53. Pandit R, Gaikwad S, Rai M. Biogenic fabrication of CuNPs, Cu bioconjugates, and in vitro assessment of antimicrobial and antioxidant activity. IET Nanobiotechnol. 2017;11(5):568-75. [
DOI:10.1049/iet-nbt.2016.0165] [
PMID] [
]
54. Müller E, Behra R, Sigg L. Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii. Environ Chem. 2015;13(3):457-63. [
DOI:10.1071/EN15132]
55. Mali SC, Raj S, Trivedi R. Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem Biophys Rep. 2019;20:100699. [
DOI:10.1016/j.bbrep.2019.100699] [
PMID] [
]
56. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn.(Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015;31:865-73. [
DOI:10.1007/s11274-015-1840-3] [
PMID]
57. Shanmugapriya J, Reshma C, Srinidhi V, Harithpriya K, Ramkumar K, Umpathy D, et al. Green synthesis of copper nanoparticles using Withania somnifera and its antioxidant and antibacterial activity. J Nanomater. 2022;2022(1):7967294. [
DOI:10.1155/2022/7967294]
58. Ahmad T, Irfan M, Bustam MA, Bhattacharjee S. Effect of reaction time on green synthesis of gold nanoparticles by using aqueous extract of Elaise guineensis (oil palm leaves). Procedia Eng. 2016;148:467-72. [
DOI:10.1016/j.proeng.2016.06.465]
59. Bhavyasree P, Xavier T. Green synthesised copper and copper oxide based nanomaterials using plant extracts and their application in antimicrobial activity. Curr Res Green Sustain Chem. 2022;5:100249. [
DOI:10.1016/j.crgsc.2021.100249]
60. Khorsandi K, Keyvani-Ghamsari S, Khatibi Shahidi F, Hosseinzadeh R, Kanwal S. A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. J Drug Target. 2021;29(9):941-59. [
DOI:10.1080/1061186X.2021.1895818] [
PMID]
61. Govarthanan M, Cho M, Park JH, Jang JS, Yi YJ, Kamala-Kannan S, et al. Cottonseed oilcake extract mediated green synthesis of silver nanoparticles and its antibacterial and cytotoxic activity. J Nanomater. 2016;2016(1):7412431. [
DOI:10.1155/2016/7412431]
62. Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience. 2015;5:135-9. [
DOI:10.1007/s12668-015-0171-z]
63. Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. J Biol Inorg Chem. 2019;24:929-41. [
DOI:10.1007/s00775-019-01717-7] [
PMID]
64. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2011;79(3):594-8. [
DOI:10.1016/j.saa.2011.03.040] [
PMID]
65. Tovar-Corona A, Lobo-Sánchez M, Herrera-Perez J, Zanella R, Rodriguez-Mora J, Vázquez-Cuchillo O. Green synthesis of copper (0) nanoparticles with cyanidine-O-3-glucoside and its strong antimicrobial activity. Mater Lett. 2018;211:266-9. [
DOI:10.1016/j.matlet.2017.10.020]
66. Eshed M, Lellouche J, Gedanken A, Banin E. A Zn‐doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv Funct Mater. 2014;24(10):1382-90. [
DOI:10.1002/adfm.201302425]
67. Ghasemian E, Naghoni A, Rahvar H, Kialha M, Tabaraie B. Evaluating the effect of copper nanoparticles in inhibiting Pseudomonas aeruginosa and Listeria monocytogenes biofilm formation. Jundishapur J Microbiol. 2015;8(5):e17430. [
DOI:10.5812/jjm.17430] [
PMID] [
]
68. Shamshad S, Rajagopal S. Current trends and advances of quorum sensing inhibitors and their biotechnological applications. Indian J Biochem Biophys. 2023;60(4):255-80