Volume 10, Issue 4 (2024)                   IEM 2024, 10(4): 329-333 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmed Khalaf S. Serum Level of Some Immunological Markers in COVID-19 Patients in Diyala Province, Iraq. IEM 2024; 10 (4) :329-333
URL: http://iem.modares.ac.ir/article-4-75996-en.html
Department of biotechnology, College of Science, Diyala University, Diyala, Iraq , shahrazadah.kh@uodiyala.edu.iq
Abstract:   (483 Views)
Background: This study aimed to measure the levels of IL-1β, IL-18, and IFN-Ƴ in the sera of patients with severe COVID-19 in Diyala province in Iraq.
Materials & Methods: Blood samples were collected from 60 patients in Baquba Teaching Hospital in Iraq between January and April 2021, these patients had clinical signs and symptoms of COVID-19, diagnosed by the hospital doctors; in addition, 30 samples were taken from healthy control people, and the levels of IL_1β, IL_18, and IFN_Ƴ markers were detected in COVID-19 patients and the control group by ELISA (enzyme-linked immunosorbent assay) technique.
Findings: This study displayed the high level of IL_1β, IL_18, and IFN_Ƴ in COVID-19 patients compared with the control group (154.04 ± 16.54 versus 85.41 ± 8.9 pg/mL, 82.88 ± 7.96 versus 66.67 ± 9.34 pg/mL, and 116.06 ± 26.5 versus 97.96 ± 12.2pg/mL, respectively). This study also showed a high prevalence of COVID-19 in males compared to females. In the sera of COVID-19 patients, the levels of IL_1β, IL_18, and IFN_Ƴ were noticeably higher in females than in males.
Conclusion: There was a significant difference in the levels of IL_1β, IL_18, and IFN-Ƴ between the study groups; also, they were higher in females than in males.
Full-Text [PDF 379 kb]   (34 Downloads)    
Article Type: Original Research | Subject: Virology
Received: 2024/07/8 | Accepted: 2024/10/12 | Published: 2024/12/20

References
1. Arend, W. P., Palmer, G., & Gabay, C. (2008). IL‐1, IL‐18, and IL‐33 families of cytokines. Immunological reviews, 223(1), 20-38.‌ [DOI:10.1111/j.1600-065X.2008.00624.x] [PMID]
2. Cardona, P. J., Caylà, J. A., Hernández, A., Palma, D., and Rius, C; 2021. Revision sobrel as vacun as frente a SARS-CoV-2. Actualization a 31 de enerode.
3. Chousterman Benjamin G, Swirski Filip K, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39:517-528. [DOI:10.1007/s00281-017-0639-8] [PMID]
4. de Jesus, A.A.; Canna, S.W.; Liu, Y.; Goldbach-Mansky, R. Molecular Mechanisms in Genetically Defined Autoinflammatory Diseases: Disorders of Amplified Danger Signaling. Annu. Rev. Immunol. 2015, 33, 823-874 [DOI:10.1146/annurev-immunol-032414-112227] [PMID] []
5. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019;15(10):612-32. [DOI:10.1038/s41584-019-0277-8] [PMID]
6. Flament H, et al. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nat Immunol. 2021;22(3):322-35. [DOI:10.1038/s41590-021-00870-z] [PMID]
7. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123-30. [DOI:10.1080/22221751.2020.1770129] [PMID] []
8. Huang C, Wang Y, Li X, et al. Clinical features of patients in-fected with 2019 novel coronavirus in Wuhan. China. Lancet. 2020;395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5] [PMID]
9. Iwamura, A. P. D., Tavares da Silva, M. R., Hümmelgen, A. L., Soeiro Pereira, P. V., Falcai, A., Grumach, A. S., ... & Prando, C. (2021). Immunity and inflammatory biomarkers in COVID‐19: a systematic review. Reviews in Medical Virology, 31(4), e2199.‌ [DOI:10.1002/rmv.2199] [PMID]
10. Jamilloux Y, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7): 102567. [DOI:10.1016/j.autrev.2020.102567] [PMID] []
11. Lu, Q., Zhu, Z., Zhou, H., Hu, Y., Shen, G., Zhu, P., ... & Xie, X. (2020). Discussion about clinical value of detection of IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 for the diagnosis of COVID-19. Authorea preprints. https://doi.org/10.22541/au.159103670.01225809 [DOI:10.22541/au.159363332.20964809]
12. Madfoon, Z. M., Mezher, M. N., & Mohammed, S. (2022). Comparison of Some Immunological Parameters of Covid-19 Patients with and without Diabetes According to age Groups and Gender. Pakistan Journal of Medical & Health Sciences, 16(03), 476-476.‌ [DOI:10.53350/pjmhs22163476]
13. Mardi, A., Meidaninikjeh, S., Nikfarjam, S., Majidi Zolbanin, N., & Jafari, R. (2021). Interleukin-1 in COVID-19 infection: Immunopathogenesis and possible therapeutic perspective. Viral Immunology, 34(10), 679-688.‌ [DOI:10.1089/vim.2021.0071] [PMID]
14. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417-26. [DOI:10.1016/S1097-2765(02)00599-3] [PMID]
15. Orzalli MH, et al. An antiviral branch of the IL-1 signaling pathway restricts immune-evasive virus replication. Mol Cell. 2018;71(5):825-840.e6. [DOI:10.1016/j.molcel.2018.07.009] [PMID] []
16. Shirley, R. (2008). Development of targeted gene delivery vectors to assess cardiac overexpresion of ACE2 in vivo (Doctoral dissertation, University of Glasgow).
17. Toubal A, et al. Mucosal-associated invariant T cells and disease. Nat Rev Immunol. 2019;19(10):643-57. [DOI:10.1038/s41577-019-0191-y] [PMID]
18. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 asso-ciated with acute respiratory distress syndrome. Lancet. Respir Med. 2020;8(4):420-422. [DOI:10.1016/S2213-2600(20)30076-X] [PMID]
19. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475 81. [DOI:10.1016/S2213-2600(20)30079-5] [PMID]
20. Yang, X., Dai, T., Zhou, X., Qian, H., Guo, R., Lei, L., ... & Zhang, B. (2020). Naturally activated adaptive immunity in COVID‐19 patients. Journal of cellular and molecular medicine, 24(21), 12457-12463. [DOI:10.1111/jcmm.15771] [PMID] []
21. Zhao J. Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity. 2016;44(6):1379-1391. doi: 10.1016/j.immuni.2016.05.006. [DOI:10.1016/j.immuni.2016.05.006] [PMID] []
22. Zhao Y, Qin L, Zhang P, Li K, Liang L, Sun J, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13). [DOI:10.1172/jci.insight.139834] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.