Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
Abstract
The genus Pseudomonas consists of more than 120 species that are ubiquitous in moist environments such as water and soil ecosystems and are pathogenic to animals and humans. Within the genus of Pseudomonas, P. aeruginosa is most frequently associated with human infections. The bacterium is regarded as an opportunistic pathogen, primarily causing nosocomial infections in immunocompromised patients. The existing knowledge regarding the pathogenesis of P. aeruginosa has mainly been obtained through studying clinical isolates; particularly those involved in causing chronic lung infection in cystic fibrosis patients. Nosocomial infections commonly associated with P. aeruginosa include ventilator-associated pneumonia, catheter-associated urinary tract infections, wound infections in severe burn patients and septicaemia with their pathogenesis shown to be multifactorial. The bacterium is also capable of producing a number of toxins via the type III secretion system, as well as secreting enzymes and proteins including elastase, phospholipase C and siderophores. However, P. aeruginosa is also a waterborne pathogen, commonly found in environmental waters as well as in other sources such as sewage treatment plants. The public health implication of these bacteria whilst in the environment has not been fully investigated. Here we review our present knowledge about the pathogenesis of P. aeruginosa in clinical settings and the environment.
Peix A, Ramirez-Bahena MH, Velazquez. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol. 2009; 9(6):1132-47.
Spiers AJ, Buckling A, Rainey PB. The causes of Pseudomonas diversity. Microbiology. 2000; 146(10): 2345-50.
Meyer JM. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol. 2000; 174(3):135-42.
Lamont IL, Martin LW. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa.Microbiology. 2003; 149(4): 833-42.
Frank LH, DeMoss RD. On the biosynthesis of pyocyanine. J Bacteriol. 1959; 77(6):776-82.
Young G. Pigment production and antibiotic activity in cultures of Pseudomonas aeruginosa. J Bacteriol. 1947; 54(2):109-17.
Coggan KA, Wolfgang MC. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol. 2012; 14(2):47-70.
Pirnay JP, Matthijs S, Colak H, Chablain P, Bilocq F, Van Eldere J, et al. Global Pseudomonas aeruginosa biodiversity as reflected in a Belgian river. Environ Microbiol. 2005; 7(7):969-80.
Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daures JP, et al. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect. 2004; 57(3):209-16.
Ferroni A, Nguyen L, Pron B, Quesne G, Brusset MC, Berche P.Outbreak of nosocomial urinary tract infections due to Pseudomonas aeruginosa in a paediatric surgical unit associated with tap-water contamination. J Hosp Infect. 1998; 39(4):301-7.
Riou M, Carbonnelle S, Avrain L, Mesaros N, Pirnay JP, BilocqF, et al. In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of intensive care unit patients with nosocomial pneumonia and receiving antipseudomonal therapy. Int J Antimicrob Agents. 2010; 36(6):513-22.
Brown SP, Cornfort DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity and control. Trends Microbiol. 2012; 20(7):336-42.
Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol. 2008; 12(1):61-6.
Bodey GP. Microbiologic aspects in patients with leukaemia. Human Pathol. 1974; 5(6):687-98.
Koch C, Hoiby N. Pathogenesis of cystic fibrosis. Lancet. 1993; 341(8852):1065-9.
Morris NS, Stickler DJ, McLean RJ. The development of bacterial biofilms on indwelling urethral catheters. World J Urol. 1999; 17(6):345-50.
Huhlescu S, Simon M, Lubnow M, Kaase M, Wewalka G, Pietzka AT, et al. Fatal Pseudomonas aeruginosa pneumonia in a previously healthy woman was most likely associated with a contaminated hot tub. Infect. 2001; 39(3):265-9.
Hatchette TF, Gupta R, Marrie TJ. Pseudomonas aeruginosa community-acquired pneumonia in previously healthy adult: case report and review of the literature. Clin Infect Dis. 2000; 31(6):1349-56.
Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Paediatr. 2001; 138(5):699-704.
Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelial fail to kill bacteria of abnormal airway surface fluid. Cell.1996; 85(2):229-36.
Schwiebert EM, Benos DJ, Egan ME, Stutts MJ, Guggion WB.CFTR is a conductance regulator as well as a chloride channel. Physiol Rev. 1999; 79(Supp 1):145-66.
Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev. 1999; 79(1):23-45.
Terheggen-Lagro SWJ, Rijkers GT, Van der Ent CK.The role of airway epithelium and blood neutrophils in the inflammatory response in cystic fibrosis. J Cyst Fibros.2005; 4(2):15-23.
Worlitzch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest.2002; 109(3):317-25.
Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Clin Infect Dis. 2008; 47(12):1526-33.
Fujitani S, Sun HY, Yu VL, Weingarten JA.Pneumonia due to Pseudomonas aeruginosa: part 1: epidemiology, clinical diagnosis and source. Chest. 2011; 139(4):909-19.
Bergmans D, Bonten M, van Tiel F, Gaillard C, van der Geest S, Wilting R,et al.Cross-colonisation with Pseudomonas aeruginosa of patients in an intensive care unit. Thorax.1996; 53(12):1053-8.
Parker CM, Kutsogiannis J, Muscedere J, Cook D, Dodek P, Day AG, et al. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors and outcomes. J Crit Care. 23(1):18-26.
Inglis TJJ. Evidence for dynamic phenomena in residual tracheal tube biofilm. Br J Anaesth. 1993; 70(1):22-4.
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a mini review. J Infect Public Health. 2009; 2(3):101-11.
Maki DG, Tambyah PA. Engineering out the risk for infection with urinary catheters. Emerg Infect Dis. 20017(2):342-7.
Ressner RAMC, Griffith ME, Rasnake MS, Hospental DR, Wolf SE. Outcomes of bacteremia in burn patients involved in combat operations overseas. J Am Coll Surg. 206(3):439-44.
Estahbanati HK, Kashani PP, Ghanaatpisheh F. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics. Burns. 2002; 28(4):637-41.
Armour AD, Shankowsky HA, Swanson T, Lee J, Tredget EE. The impact of nosocomially-acquired resistant Pseudomonas aeruginosa infection in a burn unit. J Trauma. 2007; 63(1):164-71.
Ranjan KP, Ranjan N, Bansal SK, Arora DR. Prevalence of Pseudomonas aeruginosa in post-operative wound infection in a referral hospital in Haryana, India. J Lab Physicians. 2010; 2(2):74-7.
Jombo GT, Akpan S, Epoke J, DenenAkaa P, Odey F. Multi-drug resistant Pseudomonas aeruginosa infections complicating surgical wounds and the potential challenges in managing post-operative wound infections: University of Calabar Teaching Hospital experience. Asian J Trop Med. 2010; 3(6):479-82.
Gang RK, Bang RL, Sanyal SC, Mokaddas E, Lari AR. Pseudomonas aeruginosa septicaemia in burns. Burns. 1999; 25(7):611-6.
Patel BM, Paratz JD, Mallet A, Lipman J, Rudd M, Muller MJ, et al. Characteristics of bloodstream infections in burn patients: an 11-year retrospective study. Burns. 2012; 38(5):685-90.
Guida M, Galle F, Mattei ML, Anastasi D, Liquori G. Microbiological quality of the water of recreational and rehabilitation pools: a 2-year survey in Naples, Italy. Public Health. 2009; 123(6):448-451.
Moore JE, Heaney N, Millar BC, Crowe M, Elborn JS. Incidence of Pseudomonas aeruginosa in recreational and hydrotherapy pools. Commun Dis Public Health. 2002; 5(1): 23-6.
Tirodimos I, Arvanitidou M, Daravessis L, Bisiklis A, Alexiou-Daneel S. Prevalence and antibiotic resistance of Pseudomonas aeruginosa isolated from swimming pools in northern Greece. Health J. 2010; 16(7):783-7.
Ratnam S, Hogan K, March SB, Butler RW. Whirl pool-associated follicul it is caused by Pseudomonas aeruginosa: report of an outbreak and review. J Clin Microbiol. 1986; 23(3):655-9.
Hopkins RS, Abbott DO, Wallace LE. Follicular dermatitis outbreak caused by Pseudomonas aeruginosa associated with a motel’s indoor swimming pool. Public Health Rep. 1981; 96(3):246-9.
Daniel CR, Iorizzo M, Piraccini BM, Tosti A. Simple onycholysis. Cutis. 2011; 87(5):226-8.
Hengge UR, Bardeli V. Images in clinical medicine. Green nails. N Engl J Med. 2009; 360(11):1125.
McNeil SA, Nordstrom-Lerner L, Malani PN, Zervos M, Kauffman CA. Outbreak of sternal surgical site infections due to Pseudomonas aeruginosa traced to a scrub nurse with onychomycosis. Clin Infect Dis. 2001; 33(3):317-23.
Nagachandrikaa T, Kumarb U, Dumpatic S, Charyc S, Mandatharac PS, Rathi VM. Prevalence of contact lens related complications in a tertiary eye centre in India. Cont Lens Anterior Eye. 2011; 34(6):266-8.
Ramphal R, mcNiece MT, Polack FM. Adherence of Pseudomonas aeruginosa to the injured cornea: a step in the pathogenesis of corneal infections. Ann Opthalmol. 1981;13(4): 421-5.
Stern GA, Lubniewski A, Allen C. The interaction between Pseudomonas aeruginosa and the corneal epithelium. Arch Ophthalmol. 1985; 103(8):1221-5.
Yeung KK, Forister JFY, Forister EF, Chung MY, Han S, Weissman BA. Compliance with soft contact lens replacement schedules and associated contact lens-related ocular complications: the UCLA contact lens study. Optom.2010; 81(11):598-607.
Wang MC, Liu CY, Shiao AS, Wang T. Ear problems in swimmers. J Chin Med Assoc. 2005; 68(8):347-52.
Nussinovitch M, Rimon A, Volovitz B, Raveh E, Prais D, Amir J. Cotton-tip applicators as a leading cause of otitis externa. Int J Pediatr Otorhinolaryngol. 2004; 73(4):1168-72.
Ninkovic G, Dullo V, Saunders NC. Microbiology of otitis externa in the secondary care in United Kingdom and antimicrobial sensitivity. Auris Nasus Larynx. 2008; 35(4):480-4.
De Kievit TR, Iglewski BH.Bacterial quorum sensing in pathogenic relationships. Infect Immun. 2000; 68(9):4839-49.
Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial agent. J Clin Invest. 2003; 112(10):1460-5.
O’Loughlin CT, Miller LC, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA. 2013; 110(44):17981-6.
Pizzaro-Cerda J. Bacterial adhesion and entry into host cells. Cell. 2006; 124(4):715-27.
Bertrand JJ, West JT, Engel JN.Genetic analysis of the regulation of type IV pilus function by the chp chemosensory system of Pseudomonas aeruginosa. J Bacteriol. 2010; 192(4):994-1010.
Hahn HP. The type-4 pilus is the major virulence-associated adhesion of Pseudomonas aeruginosa – a review. Gene. 1997; 192(1):99-108.
Burrows LL. Pseudomonas aeruginosa twitching motility: type IV pili in action. AnnuRevMicrobiol. 2012; 66: 493-520.
Zolfaghar I, Evans DJ, Fleiszig MJ.Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect Immun.2003; 71(9):5389-93.
Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002; 56:289-314.
Nivens DE, Ohman DE, Williams J, Franklin MJ.Role of alginate and its o-acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol. 2001; 183(3):1047-57.
Lam J, Chan R, Lam K, Costerton JW. Productions of mucoid microcolnies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980; 28(2):546-56.
Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, et al. The pel and psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012; 14(8):1913-28.
Byrd MS, Pang B, Mishra M, Swords WE, Wozniak DJ. The Pseudomonas aeruginosa exopolysaccharide psl facilitates surface adherence and NF-kappaB activation in A459 cells. MBio. 2010; 1(3):e00140-10.
Noiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, et al. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011; 3(2):55-65.
Pritt B, O’Brien L, Winn W.Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol. 2007; 128(1):32-34.
Bayer AS, Speert DP, Park S, Tu J, Witt M, Nast CC, et al. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leaukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun. 1991; 59(1):302-8.
Schwarzmann S, Boring JR. Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa. Infect Immun. 1971; 3(6):762-7.
Simpson JA, Smith SE, Dean RT. Alginate inhibition of the uptake of Pseudomonas aeruginosa by marcophages. J GenMicrobiol.1988; 134(1):29-36.
Wozniak DJ, Wyckoff TJO, Starkey M, Keyser R, Azadi P, O’Toole GA, et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PA01 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA.2003; 100(13):7907-12.
Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but it not essential for biofilm formation. J Med Microbiol. 2004; 53(7):679-90.
Ma L, Jackson KD, Landry RM, Parsek MR, Wozniak DJ. Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the prl polysaccharide in adhesion and maintaining biofilm structure post attachment. J Bacteriol. 2006; 188(23):8213-21.
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a mini review. J Infect Public Health.2009;2(3):101-11.
Pier BP. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J MedMicrobiol. 2007; 297(5):277-95.
Villar J, Maca-Meyer N, Perez-Mendez L, Flores C.Bench-to-bedisde review: understanding genetic predisposition to sepsis. Crit Care. 2004; 8(3):180-9.
Backhed F, Normark S, Schmeda EKH, Oscarson S. Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. Microbes Infect. 2003; 5(12):1057-63.
Evans DJ, Pier GB, Coyne MJ, Goldberg JB.The rfb locus from Pseudomonas aeruginosa strain PA103 promotes the expression of O antigen by both LPS-rough and LPS-smooth isolates from cystic fibrosis patients. Mol Microbiol. 2006; 13(3):427-34.
Hancock RE, Mutharia LM, Darveau RP, Speert DP, Pier BG. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun. 1983; 42(1):170-7.
Hauser AR, Engel JN. Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun. 1999; 67(10):5530-7.
Galle M, Jin S, Bogaert P, Haegman M, Vandenabeel P, Beyaert R. The Pseudomonas aeruginosa type III secretion system has an exotoxin s/t/y independent during acute lung infection. PLoS One. 2012;7(7):e41547.
Kaufman MR, Jia J, Zeng L, Ha U, Chow M, Jin S. Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiol. 2000; 146(Pt10):2531-41.
Hritonenko V, Mun JJ, Connie T, Simon NC, Barbieri JT, Evans DJ, et al.Adenylate cyclase activity of Pseudomonas aeruginosa exoY can mediate bleb-niche formation in epithelial cells and contributes to virulence. Microb Pathog. 2011; 51(5):305-12.
Prasain N, Alexeyev M, Balczon R, Stevens T. Soluble adenylyl cyclase-dependent microtubule disassembly reveals a novel mechanism of endothelial cell retraction. Am J Physiol Lung Cell Mol Physiol. 2009; 297(1):73-83.
Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SMJ, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol. 1997; 25(3):547-57.
Sato H,Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, et al. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, exoU. EMBO J. 2003; 22(12):2959-69.
Plotkowski MC, Feliciano LFP, Machado GBS, Cunha LG, Freita C, Saliba AM,et al. ExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells. Eur Respir J. 2008; 32(6):1591-8.
Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR. Prevalence of type III secretion genus in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology. 2001; 147(Pt 10):2659-69.
Wolfgang MC, Kulasekra BR, Liang X, Boyd D, Yang Q, Miyada CG, et al.Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Nat Aca Sci USA.2003; 100(14):8484-9.
Mitov I, Strateva T, Markova B.Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz J Microbiol. 2010; 41(3):588-95.
Schulert GS, Feltman H, Rabin SDP, Martin CG, Battle SE, Rello J, et al. Secretion of the toxin exoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis.2003; 188(11):1695-706.
Kurahashi K, Kajikawa O, Sawa T, Ohara M, Frank DW, Martin TR,et al.Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest. 1999; 104(6):743-50.
Finnan S, Morrissey JP, O’Gara F, Boyd EF. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol. 2004; 42(12):5783-92.
Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosaExoU, ExoS, and ExoT to virulence in the lung. Infect Immun. 2004; 72(12):6969-77.
Dacheux D, Toussaint B, Richard M, Brochier G, Croize J, Attree I. Pseudomonas aeruginosa cystic fibrosis isolates induce rapid type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect Immun. 2000; 68(5):2916-24.
Berthelot P, Attree I, Plesiat P, Chabert J, de Bentzmann S, Pozzetto B, et al. Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bactermia isolates: evidence for a possible association between O serotypes and exo genes. J Infect Dis. 2003; 188(4):512-8.
Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammons JH, Vallet-Gely I, et al. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol. 2013; 195(13): 3093-104.
Meyers DJ, Berk RS. Characterization of phospholipase C from Pseudomonas aeruginosa as a potent inflammatory agent. Infect Immun. 1990; 58(3):659-66.
Heck LW, Morihara K, Abrahamson DR. Degradation of soluble laminin and depletion of tissue-associated basement membrane lamininby Pseudomonas aeruginosa elastase and alkaline protease. Infect Immun. 1986; 54(1):149-53.
Leduc D, Beaufort N, de Bentzmann S, Rousselle JC, Namane A, Chingnard M, et al. The Pseudomonas aeruginosa lasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun. 2007; 75(8):3848-58.
Theander TG, Kharazmi A, Pedersen BK, Christensen LD, Tvede N, Poulsen LK, et al.Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect Immun.1988; 56(7):1673-7.
Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol. 2010; 59(Pt 8):881-90.
Martins VV, Pitondo-Silva A, Manco LDM, Falcao JF, Freitas SDS, Silveira WDD, et al. Pathogenic potential and genetic diversity of environmental and clinical isolates of Pseudomonas aeruginosa. APMIS. 2014; 122(2):92-100.
Lanotte P, Watt S, Mereghetti L, Dartiguelongue N, Rastegar-Lari A, Goundeau A, et al. Genetic features of Pseudomonas aeruginosa isolates from cystic fibrosis patients compared with those of isolates from other origins. J Med Microbiol. 2004; 53(Pt 1):73-81.
Lamont IL, Martin LW. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology.2003; 149(Pt 4):833-42.
Meyer JM, Neely A, Stintzi A, Georges C, Holder IA. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun. 1996; 64(2):518-23.
Ho Sui SJ, Lo R, Fernandes AR, Caulfiled MDG, Lerman JA, Xie L, et al.Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents. 2012; 40(3):246-51.
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signalling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012; 76(1):46-65.
Aloush V, Navon-Venezia S, Seigmen-Igra Y, Cabili S, Carmeli Y. Multi-drug resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother.2006; 50(1):43-8.
Schechner V, Gottersman T, Schwartz O, Korem M, Maor Y, Rahav G, et al. Pseudomonas aeruginosa bacteremia upon admission: risk factors for mortality and influence of inadequate empirical antimicrobial therapy. Diagn Microbiol Infect Dis. 2001; 71(1):38-45.
Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J RSoc Med. 2002; 95(suppl 41):22-6.
Bredenstein EBM, de la Fuente-Nunez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol.2011; 19(8):419-25.
Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother. 1999; 43(6):1379-82.
Messadi AA, Lamia T, Kamel B, Salima Q, Monia M, Said BR. Association between antibiotic use and changes in susceptibility patterns of Pseudomonas aeruginosa in an intensive care burn unit: a 5-year study, 2000-2004. Burns.2008; 34(8):1098-102.
Allen HK, Donato J, Huimi Wang H, Cloud-Hansen KA, Davies J, Handelsman J.Call of the wild: antibiotic genes in natural environments. Nat Rev Microbiol. 2010; 8(4):251-59.
Majiduddin FK, Materon IC, Palzkill TG. Molecular analysis of beta-lactamase structure and function. Int J Med Microbiol. 2002; 292(2):127-37.
Walsh TR, Toleman MA, Poirel L, Nordmann P.Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005; 18(2):306-25.
Marra AR, Pereira CAP, Gales AG, Menezes LC, Cal RGR, de Souza JMA, et al. Bloodstream infections with metallo-b-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob. Agents Chemother. 2006; 50(1):388-90.
Juan C, Macia MD, Gutierrez O, Vidal C, Perez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyper production in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2005; 49(11):4733-8.
Gales AC, Menezes LC, Silbert S, Sader HS. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. J Antimicrob Chemother. 2003; 52(4):699-702.
Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing vim-8, a novel metallo-beta-lactamase, in a tertiary centre in Cali, Colombia. J Clin Microbiol. 2004; 42(11): 5094-101.
Vitkauskiene A, Skrodeniene E, Dambrauskiene A, Baksyte G, Macas A, Sakalauskas R. Characteristics of carbapenem-resistant Pseudomonas aeruginosa strains in patients with ventilator-associated pneumonia in intensive care units. Medicina (Kaunas). 2011; 47(12):652-6.
Li H, Luo F, Williams BJ, Blackwell TS, Xie CM. Structure and function of oprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012; 302(2):63-8.
Nakano M, Deguchi T, Kawamura T, Yasuda M, Kimura M, Okano Y, et al.Mutations in the gyrA and parC genes in fluoroquinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1997; 41(10):2289-91.
Yonezawa M, Takahata M, Matsubara N, Watanabe Y, Narita H. DNA gyrasegyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995; 39(9):1970-2.
Salma RM, Dabboussi FA, Kassaa IM, Khudary RH, Hamze MM. gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini hospital in North Lebanon. J Infect Chemother. 19(1):77-81.
Li XZ, Nikaido H, Poole K.Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995; 39(9):1948-53.
Sadeghifard N, Valizadeh A, Zolfaghary MZ, Maleki MH, Maleki A, Mohebi R, et al. Relationship between the presence of the nalC mutation and multidrug resistance in Pseudomonas aeruginosa. Int J Microbiol. 2012; 2012:575193.
Poole K.Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol. 2001; 3(2):255-64.
Thompson JM, Gundogdu A, Stratton HM, Katouli M. Antibiotic resistant Staphylococcus aureus in hospital wastewaters and sewage treatment plants with special reference to methicillin-resistant Staphylococcus aureus (MRSA). JApplMicrobiol. 2013; 114(1):44-54.
Naicker S. 2012. Extended spectrum b-lactamase producing Gram-negative strains in untreated hospital wastewater and their survival in sewage treatment plants. Honours thesis. University of the Sunshine Coast, Queensland, Australia.
Guida M, Galle F, Mattei ML, Anastasi D, Liquori G. Microbiological quality of the water of recreational and rehabilitation pools: a 2-year survey in Naples, Italy. Public Health. 2009; 123(6):448-51.
Grobe S, Wingender J, Flemming HC. Capability of mucoid Pseudomonas aeruginosa to survive in chlorinated water. Int JHyg Environ Health. 2001; 204(2-3):139-142.
Moore JE, Heaney N, Millar BC, Crowe M, Elborn JS. Incidence of Pseudomonas aeruginosa in recreational and hydrotherapy pools. Commun Dis Public Health. 2002; 5(1):23-6.
Ratnam S, Hogan K, March SB, Butler RW. Whirlpool-associated folliculitis caused by Pseudomonas aeruginosa: report of an outbreak and review. J Clin Microbiol. 1986; 23(3):655-9.
Hajjartabar M. Poor-quality water in swimming pools associated with substantial risk of otitis externa due to Pseudomonas aeruginosa. Water Sci Technol. 2004; 50(1):63-7.
Lutz JK, Lee J. Prevalence of antimicrobial-resistance of Pseudomonas aeruginosa in swimming pools and hot tubs. Int J Environ Res Public Health. 2011; 8(2):554-64.
Fuentefria DB, Ferreira AE, Graf T, Corcao G. Pseudomonas aeruginosa: spread of antimicrobial resistance in hospital effluent and surface water. Rev Soc Bras Med Trop. 2008; 41(5):470-3.
Plotnikova JM, Rahme LG, Ausubel FM.Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol. 2000; 124(4):1766-74.
Pitondo-Silva A, Martins VV, Fernandes AFT, Stehlin EG. High level of resistance to Aztreonam and Ticarcillin in Pseudomonas aeruginosa isolated from soil of different crops in Brazil. Sci Total Environ. 2014; 473-4:155-158.
StoverCK, PhamXQ, Erwin AL, MizoguchiSD, WarrenerP, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 2000; 406(6799):959-64.
Alonso A, Rojo F, Martinez JL. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. 1999; 1(5):421-30.
Tielen P, Narten M, Rosin N, Biegler I, Haddad I, Hogardt M,et al.Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from urinary tract infections. Int J Med Microbiol. 2010; 301(4):282-92.
Streeter,K. and Katouli,M. (2016). Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infection Epidemiology and Microbiology, 2(1), 25-32.
MLA
Streeter,K. , and Katouli,M. . "Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment", Infection Epidemiology and Microbiology, 2, 1, 2016, 25-32.
HARVARD
Streeter,K.,Katouli,M. (2016). 'Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment', Infection Epidemiology and Microbiology, 2(1), pp. 25-32.
CHICAGO
K. Streeter and M. Katouli, "Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment," Infection Epidemiology and Microbiology, 2 1 (2016): 25-32,
VANCOUVER
Streeter,K.,Katouli,M. Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infection Epidemiology and Microbiology, 2016; 2(1): 25-32.